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Chapter 1

GRAPHS

1.1 INTRODUCTION

Graph theory is a branch of mathematics which has applications in many

areas like anthropology, architecture, biology, chemistry, computer science, economics,

environmental conservation, psychology and telecommunication, to name a few.

The list goes on and on. In a typical situation, a problem arises in a real

world subject area that can be modded using graphs.Then existing theorems or

algorithms are used or new ones are developed to solve the original problem. We

describe the modelling process and present the basic concepts and terminology

of graph theory with emphasis on the concept of distance in graphs. In addition,

we describe a variety of graphs and useful operations.
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1.2 GRAPHS AS MODELS

Definition 1.1. In this section we define graphs and see how they are used. A

graph G is a finite non-empty set V = V (G) of p nodes together with an unordered

pairs of distinct nodes of V . We say G has order p and q. The pair e = {u, v}

of nodes in E is called an edge of G and to join u and v. We write e = uv and

say u and v are adjacent and adjacent nodes are said to be neighbours. Edge e is

incident with the two nodes u and v. A graph with p nodes and q edges is called

a {p,q}graph.

And the intuition in using graphs, it is customary to represent a graph by means

of a diagram and refer to it as a graph.
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The eleven graphs with 4 graphs

Theorem 1.2. The sum of degrees of the nodes of a graph is twice the number

of edges.

∑

degvi = 2q

Proof : Since each edge e is incident with two nodes, e contributes 2 to the sum

of the degrees of the nodes.
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A graph to illustrate adjacency and incidence

Corollary 1.3. In any graph, the number of nodes of odd degree is even.

The degree sequence is a list of the degrees of the nodes in non-increasing

order. The minimum degree among the nodes of a graph G is denoted by δ(G)

while the maximum degree by ∆(G) is the largest such number. Thus, the graph

in above figure has degree sequence {4, 3, 3, 2, 2, 2}. so δ(G) = 2 and ∆(G) = 4.

If all the nodes have the same degree of G and write degG = 4. A 3-regular

graph is called cubic.
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Two drawings of a same graph

Definition 1.4. Two graphs G and H are said to be Isomorphic (written G ∼= H

or sometimes G = H and called equal) if there exists a one-to-one correspondence

between their node sets which preserves adjacency. The three graphs G1, G2, G3

are all isomorphic to each other. For example G1 and G2 are isomorphic under

the correspondence vi ←→ ui.

The invariant of a graph G is a number associated with G which has the same

3



value for any graph isomorphic to G. We now have two simple invariants and

one sequences of invariants we can use to distinguish a pair of non-isomorphic

graphs:

1. the number of nodes, p

2. the number of edges, q

3. the degree sequence

A number of variations of graphs occur in applications. A directed graph or

digraph D consists of a finite non-empty set V of nodes together with a collection

A of ordered pars of distinct nodes in V . The elements of A are called arcs or

directed edges. A symmetric pair of arcs join two nodes u and v, one in each

direction that is arcs(u, v) and (v, u). An oriented graph is a digraph with three

nodes and three arcs are shown below and the last tow are oriented graphs.
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bb

v1 v2 v3

v4 v5 v6

u1 u5

u4 u3

b b

G1 G2 G3

Three isomorphic graphs

1.3 PATHS AND CONNECTEDNESS:

One of the most basic properties any graph can enjoy is that of being connected.

Informally, a graph is connected if it is all in one piece. In this section, we

make this concept precise and examine several fundamental classes of connected
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graphs: paths, trees and cycles.
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G1 G2G

A graph and its two subgraphs

Definition 1.5. A subgraph of G is a graph having all of its nodes and edges in

G. It is a Spanning subgraph if it contains all the nodes of G. If H is a subgraph

of G, then G is a supergraph of H. For any set S of nodes in G, the induced

subgraph〈S〉 if and only if they are adjacent in G. In the above figure, G1 and

G2 are subgraphs of G. Here G1 is an induced subgraph but G2 is not; G2 is a

spanning subgraph but not G1.

bb
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bb
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b bb

b

G

G− vw

G− v

G+ uv

A graph minus a node
A graph plus or minus an edge

The removal of a node v from a graph G results in that subgraph G − v

consisting of all nodes of G except v and all edges are not incident with v. On

the other hand, the removal of an edge e from G yields the spanning subgraph

G − e containing all the edges of G except e. Thus G − v and G − e are the

maximal subgraphs of G not containing v and e, respectively. If u and v are not
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adjacent in G, the addition of the edge uv results in the smallest supergraph of

G containing the edge uv and is denoted G+ uv.

There are certain graphs for which the result of deleting an node or an edge or

adding an edge in independent of the particular node or edge selected. If this is

so far for a graph G, we denote the result accordingly by G − v, G − e, G + e.

For now mention that any cycle Cn is such a graph

Definition 1.6. A walk in a graph G is an alternating sequence of nodes and

edges v0, e1, v1, e2, ..., vn−1, en, vn such that every ei = vi−1vi is an edge of G,

1 ≤ i ≤ n. It is important to mention that the nodes need not be distinct and the

same holds for the edges.

The walk connects v0 and vn and is sometimes called a v0 − vn walk.This walk

has length n , the number of occurrences of edges in it. A walk is atrail if all its

edges are distinct and a path if all its nodes are distinct. The walk is closed if

vo = vn and is open otherwise. A closed walk is a cycle provided its n nodes are

distinct and n ≥ 3.

Since the edges in a walk are determined uniquely by writing its successive nodes,

we usually do not list the edges the edges. In labelled graph of G of the following

figure a, b, e, c is a path and b, d, e, b is a cycle.

b

b b

b b

a b c

d e

A graph to illustrate walks
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Definition 1.7. The girth of a graph G, denoted g(G) is the length of the shortest

cycle in G, the circumference c(G) is the length of any longest cycle. Note that

these terms are undefined if G has no cycles. The distance d(u,v) between two

nodes u and v in G is the minimum length of a path joining them if any; otherwise

d(u, v) = ∞. The diameter d(G) of a connected graph G is the length of any

longest geodesic. The graph G in the above figure has girth g = 3 , circumference

c = 5 and diameter d = 2.

A graph is connected if there is a path joining each pair of nodes. A component

of a graph is a maximal connected subgraph. If a graph has only one component

it is connected, otherwise it is disconnected G and G1 each have one component

while G2 has two.

Among important connected graphs of order p, a cycle is denoted by Cp and path

by Pp. The complete graph Kp has every pair of its p nodes adjacent. Thus Kp

has
(

p
2

)

edges and is regular of degree p− 1.

The Kelly-Ulam Conjecture:

Let G have p nodes vi and H have p nodes ui with p ≥ 3 for each i, G− vi and

H − vi are isomorphic, then the graphs G and H are isomorphic.

This conjecture is sometimes referred to as the reconstruction cycle because of the

following view point of the problem. Draw each of the p unlabelled graphs G−vi

on 3 × 5 card thus obtaining the deck D(G) of the graph G. A legitimate deck

is the one that can be obtained from some graph. Then the conjecture can be

reformulated in terms of just one graph by asserting that any graph from which

these subgraphs can be obtained by deleting one node at a time is isomorphic to
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G. Thus, one may be reconstructed. The conjecture has been proven for several

classes of graphs including regular graphs, disconnected graphs, and the class of

graphs we discuss - trees.

Definition 1.8. Perhaps the most important type of graph is a tree. This is

so because of their applications to many different fields. Furthermore, their

simplicity makes it possible to investigate a conjecture for graphs by first studying

it for trees. A graph is cyclic if it has no cycles. A tree is a connected acyclic

graph. Any graph without cycle is a forest, thus the components of a forest are

trees. There are 11 different trees with seven nodes as shown below.
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The eleven trees with seven nodes

Theorem 1.9. The following statements are equivalent.

1. G is a tree.

2. Every two nodes of G are joined by a unique path.

3. G is connected and p = q + 1.

4. G is acyclic and p = q + 1.

5. G is acyclic and if any two nonadjacent nodes of G are joined by an edge E,

then G+ e has exactly one cycle.
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Proof : (1 =⇒ 2). Since G is connected, every two nodes are joined by a path.

Let P and P∗ be two paths joining u and v in G, and let w be the first node of

P such that w is in both P and P∗ but its successor on P is not on P∗. If we let

w∗ be the next node on P which is also on p∗, then the segments of P and P∗

which are between w and w∗ together form a cycle in G. Thus if G is acyclic,

there is at most one path joining any two nodes.

(2 =⇒ 3). Clearly G is connected. We prove p = q+1 by induction. It is obvious

that for graphs of one or two nodes. Assume it is true for graphs with fewer than

p nodes. Suppose G has p nodes, q edges and let v be a node of degree one(there

must be such a node because of the uniqueness of paths, connectedness, and

p ≥ 2) in G. Then G − v has p − 1 nodes, one less than G, and still satisfies

property 2. By the inductive hypothesis, G − v has order p − 1 = (q − 1 + 1).

Thus the number of nodes in G is p = q + 1.

(3 =⇒ 4). Assume G has a cycle of length n. Then there are n nodes and n

edges on the cycle, and for each of the p− n nodes not on the cycle there is an

incident edge on a geodesic to a node of the cycle. Each such edge is different,

so p ≥ q, which is a contradiction.

(4 =⇒ 5). Since G is acyclic, each component of G is a tree. If there are k

components, then since each component has one more node than edge. p = q+k,

so k = 1 and G is connected. Thus G is a tree and there is exactly one path

connecting any two nodes of G. If we add an edge uv to G, that edge together

with the unique path in G joining u and v forms a cycle. The cycle is unique

because the path is unique.

(5 =⇒ 1). The graph G must be connected, for otherwise an edge e could be

added joining two nodes in different components, and G + e would be acyclic.
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Thus G is connected and acyclic, so G is tree.

Corollary 1.10. Every non-trivial tree has at least two endnodes.

Proof : Let P be the longest path in a non-trivial tree T and let u and v be end

nodes of P . Since T is acyclic, u and v each have only one neighbour in P , and

since P is a longest path they have no neighbours in T − P . Thus, there must

be at least two nodes of degree one in non-trivial tree.

Definition 1.11. A tree is a special type of bipartite graph. A graph G is bipartite

if its node set V can be partitioned into two subsets V1 and V2. For example the

following both figures shows that the graph is bipartite. If G contains every edge

joining edge joining V1 and V2, then G is complete bipartite graph. In this case,

if V1 and V2 have m and n nodes, we write G = Km,n. Obviously Km,n has mn

edges. A star is a complete bipartite graph K1,n. The complete n-partite graph

K(p1, p2, ..., pn) has node set V that can be partitioned into n parts V1, V2, ..., Vn

so that Vi has pi nodes and two nodes are adjacent if and only if they are in

distinct parts. Thus, a complete bipartite graph is a complete multi-partite graph

with just two parts.

b

b b

b

b

bb

b b b b b

bbbb

A graph and its bipartite graph
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Theorem 1.12. A graph G is bipartite if and only if all its cycles are even.

Proof : If G is bipartite, then its node set V can be partitioned into two sets V1

and V2 so that every edge of G joins a node of V1 with a node of V2. Thus, every

cycle v1, v2, ...., vn, v1 in G necessarily has its oddly subscripted nodes in V1, say

and the others in V2, so that its length is even.

For the converse, we assume without loss of generality, that G is connected (for

otherwise we can consider the components of G separately)Since G is connected

there is an edge uv joining two nodes of V1. Then the union of geodesics from

v1 to v and from v1 to u together with the edge uv contains an odd cycle, a

contradiction.

1.4 CUTNODES AND BLOCKS

Some connected graphs can be disconnected by the removal of a single node

called a cutnode. The distribution of such nodes is of considerable assistance in

the recognition of the structure of connected graphs. Edges with the analogous

cohesive property are known as bridges. The fragments of a graph held together

by its cutnodes and bridges are called its blocks.

Definition 1.13. A cutnode of a graph is a node whose removal increases the

number of components, and a bridge is such a edge. Thus if v is a cutnode

of a connected graph G, then G − v is disconnected. A non-separable graph
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is connected, nontrivial, and has no cutnodes. A block of graph is a maximal

nonseparable subgraph.

In the following figure, v is a cutnode while w is not; edge x is a bridge but

y is not and the four blocks of G are displayed. Each edge of a graph lies in

exactly one of its blocks, as does each node that is not isolated or a cutnode.

Furthermore, the edges of any cycle of G lies entirely within a single block.

G

B1

B2 B3
B4

A graph and its blocks

b

b

b

b b b

b b

b

b

b

b

bbb b

b

b

b

b b

b

b

Theorem 1.14. Let v be a node of a connected graph G. Then v is a cutnode

of G if and only if there exist nodes u and w distinct from v such that v is on

every u− w path.

Proof : If v is a cutnode in the connected graph G, then G− v is disconnected.

Let u and w paths in G− v but there are u−w paths in G since G is connected.

thus every u− w path in G contains v.

Conversely, if v is on every path in G joining u and w then there cannot be a

path joining these nodes in G− v. Thus G− r is disconnected, so v is a cutnode

of G.
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Theorem 1.15. Let e be an edge of a graph G. The following statements are

equivalent.

1. e is a bridge.

2. e is not on any cycle of G.

3. There exist nodes u and v of G such that the edge e of G is on every path

joining u and v.

Theorem 1.16. Let G be a connected graph with at least three nodes. the

following statements are equivalent.

1.

Gisnon− separable.2.Everytwonodesof

Glieonacommoncycle.

3.EverynodeandedgeofGlieonacommoncycle.

4.EverytwoedgesofGlieonacommoncycle.

5.GiventwonodesandoneedgeofG, thereisapathjoiningthenodeswhichcontainstheedge.

6.F oreverythreedistinctnodesofG, thereisapathjoininganytwoofthemwhichcontainsthethird.

7.F oreverythreedistinctnodesofG, thereisapathjoininganytwoofthemwhichdoesnotcontainsthethir

Proof : (1 =⇒ 2). Let u and v be distinct nodes of G, and let U be the set of

nodes different from u which lie on a cycle containing u. Since G has at least

three nodes and no cutnodes, it has no bridges; therefore, every node adjacent

to u is in U , so U is not empty.

Suppose v is not in U . Let w be a node in U for which the distance d(w, v) is

minimum. Let P0 be a shortest w − v path, let P1 and P2 be the two u − w
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paths of a cycle containing u and w. Since w is not a cutnode there is a u − v

path P ′ not containing w . Let w′ be the node nearest u in P ′ in either P1 or

P2. Without loss of generality, we assume u′ is in P1.

Let Q1 be the u−w′ path consisting of the u− u′ subpath of P1 and the u′−w′

subpath of P ′. Let Q2 be the u−w′ path consisting of P2 followed by the w−w′

subpath of P0. Then Q1 and Q2 are distinct u − w′ paths. Together they form

a cycle, so w′ is in U . Since w′ is on a shortest w − v path, d(w′, v) < d(w, v).

This contradicts our choice of w, proving that u and v do lie on a cycle.

(2 =⇒ 3). Let u be a node and vw be an edge of G. Let Z be a cycle containing

u and v. A cycle Z ′ containing u and vw can be formed as follows. If w is on Z,

then Z ′ consists of vw together with the v − w path P not containing v, since

otherwise v would be a cutnode by previous before theorem. Let u′ be the first

node of P in Z. Then Z ′ consists of vw followed by the w−u′ subpath of P and

the u′ − v path in Z containing u.

(3 =⇒ 4). The proof is analogous to the proceeding one, and the details are

omitted.

(4 =⇒ 5) Any two nodes of G are incident with one edge each, which lie on a

cycle by (4). Hence ant two nodes of G lie on a cycle, and we have (2), so also

(3). Let u and v be distinct nodes and e an edge of G. By (3), there are cycles

Z1 containing u and e and Z2 containing v and e. Thus, we need only consider

the case where v is not on Z1 and u is not on Z2. Begin with u and proceed along

Z1 until reaching the first node w of Z2, then take the path on Z2 joining w and

v which contains e. This walk constitutes a path joining u and v that contains

e.

(5 =⇒ 6) Let u, v and w be distinct nodes of G, and let e be any edge incident
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with w. By (5), there is a path joining u and v which contains e, and hence must

contain w.

(6 =⇒ 7) Let u, v and w be distinct nodes of G. By statement (6), there is a

u− w path P containing v. The u− v subpath of P does not contain w.

(7 =⇒ 1) By statement (7), for any two nodes u and v, no node lies on every

u− v path. Hence, G must be nonseparable.

Theorem 1.17. If G is nonseparable with δ(G) ≥ 3, then there is a node v such

that G− v is also nonseparable.

1.5 GRAPH CLASSES AND GRAPH OPERATIONS

When a new concept is developed in a graph theory, it is often first applied

to particular classes of graphs. Afterwards, more general graphs are studies and

theorems follow. In the previous sections, we encountered the paths, cycles, trees

ans bipartite graphs. Many interesting graphs are obtained by combining pairs

of graphs or operating on a single graph in some way.

Definition 1.18. The complementḠ of a graph G has V (G) as its node set,

but two nodes are adjacent in Ḡ if and only if they are not adjacent in G. A

graph and its complement are shown below. The graphs ¯Kp are called totally

disconnected and are regular of degree 0.
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A graph and its complement

Theorem 1.19. For any graph G of order 6, G or Ḡ contains a triangle.

Proof : Let v be a node of a graph G with six nodes. Since v is adjacent either

in G or Ḡ to at least half of the five other nodes of G, we can assume without

loss of generality that there are three nodes u1, u2, u3 adjacent to v in G. If any

two of these nodes are adjacent, then they are two nodes of a triangle whose

third node is v. If no two of them are adjacent in G, then they are the nodes of

a triangle in Ḡ.

Theorem 1.20. If G is disconnected, then Ḡ is connected.

Definition 1.21. Self-complementary graph is isomorphic with its complement.

Our first result about self-complementary graphs specifies their first order.

Theorem 1.22. If G is self-complementary, then p = 4n or 4n+ 1.

Theorem 1.23. If d(G) ≥ 3, then d(Ḡ) ≤ 3.
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Proof : Let x and y be any two nodes in Ḡ. Since d(G) ≥ 3, there exist nodes

u and v at distance 3 in G. Hence uv is an edge in Ḡ. Since u and v have no

common neighbour in G, both x and y are adjacent to u or v in Ḡ. It follows

that d(x, y) ≤ 3 in Ḡ, and hence d(Ḡ) ≤ 3.

b

b b

b

b

b

b

b b b

b

b

b

b

The smallest nontrivial self-complementary graphs

For any connected graph G, we write nG for the graph with n-components

each isomorphic with G. Then every graph can be written in the form ∪niGi

with Gi different from Gj for i 6= j. There are several operations on G1 and G2

whose set of nodes is the Cartesian product V1 × V2. These include the product

and the composition.

To define the cartesian product G1 × G2 consider any two nodes in G1 × G2

whenever [u1 = v1andu2v2 ∈ E(G2)] or [u2 = v2andu1v1 ∈ E(G1)].

b

b

b

b

b

b

b

b

b

b

b

b

b

G1 G2

G1 ∪G2 G1 +G2

The union and the join of two graphs

Corollary 1.24. Every non trivial self-complementary graph has diameter 2 or

3.
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Definition 1.25. In this section, we define the graphs G1 and G2 have disjoint

node sets V1 and V2 and edge sets E1 and E2 respectively. Their union G =

G1 ∪ G2 has expected, V = V1 + V2 and E = E1 + E2. Their join is denoted

G1+G2 and consists of G1∪G2 and all edges joining V1 and V2. These operations

are illustrated in the following figure with G1 = K2 = P2 and G2 = K1,2 = P3.

b

b b b b

bbb

G1 b b bG2 G1 ×G2

v1

u1

u2

v2
w2

(u1, u2)(u1, v2)(u1, w2)

(v1, u2)(v1, v2)(v1, w2)

The produt of two graphs

Definition 1.26. The corona G1 ◦G2 of graph G is the graph obtained by taking

one copy of G1 of order p1 and p1 copies of G2, and then joining the ith node of

G1 to every node in the ith copy of G2. For the graphs G1 = K2 and G2 = P3,

the two different coronas G1 ◦G2 and G2 ◦G1 are shown below.

b

b b b b

bbb

G1 b b bG2 G1 ×G2

v1

u1

u2

v2
w2

(u1, u2)(u1, v2)(u1, w2)

(v1, u2)(v1, v2)(v1, w2)

The product of two graphs

An important class of graphs now known as hypercubes are most naturally

expressed in terms of products. The n-cube Qn is defined recursively by Q1 = K2

and Qn = K2×Qn−1. Thus Qn has 2n nodes which may be labelled as a1a2...an,

where each ai is either 0 or 1. Two nodes of Qn are adjacent if their binary

sequences differ in exactly one place.

18



b b b

b

b

b bb b

b

b

b

b

b

b

b

b

The two different coronas of two graphs

Definition 1.27. The square G2 of a graph G has V (G2) = V (G) with u, v

adjacent in G2 whenever d(u, v) ≤ 2 in G. The higher powers G3, G4, ... of G are

defined similarly. Powers of graphs have been studied mostly in connection with

hamiltonicity and chordal graphs.

Definition 1.28. A clique of a graph is a maximal complete subgraph. The clique

graph K(G) of a given graph G has the cliques of G as its nodes and two nodes

of K(G) are adjacent if the corresponding cliques intersect. Not every graph is

the clique graph of some graph.
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G2 L(G2)

Graphs and their line graphs

Definition 1.29. Let graph G have at least one edge. The set of nodes of line

graph of G, denoted L(G) consists of the edges of G with two nodes of L(G)
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adjacent whenever the corresponding edges of G are. Two examples of graphs

and their line graphs are given in the following figure. Note that in this figure

G2 = L(G1), so that L(G2) = L(L(G1)). We write L2(G) = L(L(G)), and in

general the iterated line graph Ln(G) = L(Ln−1(G)).

A graph G is a line graph if it is isomorphic to the line graph L(H) of some graph

H. For example K4 − e is a line graph. On the other hand, we now verify that

K1,3 is not a line graph. Assume K1,3 = L(H). Then H has four edges a, b, c, d

since K1,3 has four nodes. In H one of the edges, say a, is adjacent with the other

three edges, while none of b, c, d are adjacent. Since a has only two endnodes, at

least one pair of b, c, d must be adjacent to a at a single node, making that pair

of edges adjacent to one another as well, a contradiction. So K1,3 is not a line

graph. By the same reasoning K1,3 cannot be an induced subgraph or a line graph.

Theorem 1.30. A graph G is a line graph G is a line graph if and only if the

edges of G can be partitioned into complete subgraphs in such a way that no node

lies in more than two of the subgraphs.

Proof : Let G be a line graph of H . Without loss of generality, we assume that

H has no isolated nodes. Then the edges in the star at each node of H induce a

complete subgraph of G and every edge lies in exactly one such subgraph. Since

each edge of H belong to the stars of exactly two nodes of H , no node of G is in

more than two of the complete subgraphs.

Given a partition of the edges of a graph G into complete subgraphs S1, S2, ..., Sn

such that no node lies in more than two of the subgraphs, we construct a graph
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H whose line graph is G. The nodes of H correspond to the set S of subgraphs

S1, S2, ..., Sn together with the set U of nodes belonging to only one of the

subgraphs Si. Thus S ∪ U is the node set of H and two of these nodes are

adjacent whenever they have nonempty intersection.

Theorem 1.31. G is a line graph if and only if

1. K1,3 is not an induced subgraph of G, and

2. if K4 − e is an induced subgraph of G, then at least one of the two triangles

in K4 − e is even.

Corollary 1.32. Graph G is a line graph if and only if none of its nine graphs

of following figure is an induced subgraph of G.

Proof : Using the above theorem, we see that K1,3 is not an induced subgraph

of a line graph G. Suppose K4 − e is an induced subgraph of G. Then to find

other forbidden subgraphs,check possible adjacencies among odd, contradicting

to the above theorem . For example, if some node v is adjacent to both of the

degree of nodes of degree two in K4 − e and no others, then both triangles are

odd so G is not a line graph. In this case, we get the second graph of the above

figure. If a node v is adjacent to all the nodes of K4 − e again both triangles

are odd so G is not a line graph and we find the third forbidden subgraph. If

nodes u and v are each adjacent to one of the nodes of degree 2 and no other

nodes in K4− e , both the triangles are odd so G is not a line graph and we find

the fourth forbidden graph. Each of the other forbidden subgraphs is found in a
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similar manner using the above theorem.
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Chapter 2

CENTERS

2.1 Introduction

Facility location problems deal with the task of choosing a site subject to some

criteria. For example, in determining where to locate an emergency facility such

as hospital or fire station, we would like to minimize the response time between

the facility and the location of a possible emergency. In deciding the position

for a service facility such as a post office, power station or employment office, we

want to minimize the total travel time for the people. Each of these situations

deals with the concept of centrality. However, the type of center differs for each

of the examples mentioned. Centrality questions are now examined using graphs

and distance concepts.
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2.2 THE CENTER AND ECCENTRICITY

Let G be a connected graph and let v be a node of G. The eccentricity e(v)

of v is the distance to a node farthest from v. Thus

e(v) = max{d(u, v) : u ∈ V }
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A graph and its ecentricities

The radius r(G) is the minimum eccentricity of the nodes, whereas the

diameter d(G) is the maximum eccentricity. Now v is a central node if e(v) =

r(G) and the center C(G) is the set of all central nodes. Thus, the center

consists of all nodes having maximum eccentricity. Node v is a peripheral node if

e(v) = d(G) and the periphery is the set of all such nodes. For node v, each node

at distance e(v) from v is an eccentric node for v. These concepts are illustrated

in above figure. where the eccentricity of each node is shown in parenthesis.

Graph G has radius 2, diameter 4 and central nodes d and g; nodes f and i are

eccentric nodes for e.

A basic result concerning centers is the classical theorem of Jordan. When

p(T ) ≥ 3, let T ′ be the subtree of T obtained by removing all end nodes of
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T . A caterpillar is atree for which the nodes are not endnodes induce a path.

Theorem 2.1. The center of a tree consists of either a single node or a pair of

adjacent nodes.

Proof : The result is trivial for the trees K1 and K2. We show that any other

tree T has the same center as the tree T ′. Clearly, for each node v of T , only

an end node can be an eccentric node for v. Thus, the eccentricity of each

node in T ′ will be exactly one less than the eccentricity of the same node in

T . Hence the nodes with minimum eccentricity in T ′ are the same nodes of

minimum eccentricity in T , that is T and T ′ have the same center. If the process

of removing end nodes is repeated, we obtain successive trees having the same

center as T . Since T is finite, we eventually obtain a subtreee of T which is either

K1 or K2. In either, case, the nodes in this ultimate tree constitute the center

of T which thus consists of a single node or a pair of adjacent nodes.

A tree with one central node is called acentral tree and one with two central

nodes is called bicentral
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A central tree T and bicentral tree T*

Theorem 2.2. The center C(G) of any connected graph G lies within a block of

G.

Proof : Suppose the center C(G) of a connected graph G lies in more than one

block. Then G contains a cutnode v such that G− v has components G1 and G2

each of which conatins a central node of G. Let u be a eccentric node of v and

let P be an u − v path of length e(v). Then P contains no node from at least

one of G1 and G2, say G1. Let w be acentral node of G1 and let P ′ be a w − v

geodesic in G. Then e(w) ≥ d(w, v) + d(v, u) ≥ 1 + e(v). So w is not a central

node, a contradiction. Thus all central nodes must lie in a single block.

Definition 2.3. The Centroid:

A branch at a node v of a tree T is a maximal subtree containing v as an endnode.

Thus, the number of branches at v is degv. The weight at a node v of T is the

maximum number of edges in nay branch at v. The weights at the non endnodes

of the tree in following figure are indicated. Of course, the weight at each endnode

is 13, the number of edges.

A node v is a centroid node of a tree T if v has minimum weight, and the centroid
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of T consists of all such nodes. Centroids have not been widely studies because,

until recently, the were only defined for trees.
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The weights at the nodes of a tree

Theorem 2.4. Every tree has a centroid consisting of either one node or two

adjacent nodes.

Slater extended the concept of a centroid so that it is defined for all connected

graphs. For a given pair of nodes u and v , let c(u) be the number of nodes which

are closer to u than to v, and let c(v) be the number of nodes which are closer to

v than to u. Let f(u, v) = c(u)− c(v) and le g(u) = Σv∈V −uf(u, v). The centroid

of a graph G is the set of all nodes for which g(u) is maximum.

Definition 2.5. Structural Results:

A graph is planar if it can be drawn in the plane with no crossing edges. Two

graphs are homeomorphic if they can both be obtained from the same graph by a

sequence of subdivisions of edges. For example, any two cycles are homeomorphic,

and a graph homeomorphic to K4 is displayed.
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Definition 2.6. The central subgraph 〈C(G)〉 of a graph G is the subgraph

induced by the center. A structural result for centers is of the following form: if

G is a certain type of graph then the central subgraph of G must have a particular

structure. Jordan result asserts that if T is a tree, then 〈C(T )〉 is isomorphic to

K1 or K2.

A graph is outerplanar, if it can be drawn in the plane with all nodes in the

exterior boundary; it is maximal outerplanar if no edge can be added without

destroying its outerplanar property.

Theorem 2.7. If G is a maximal outerplanar graph, then its central subgraph

〈C(G)〉 is isomorphic to one of the seven graphs.

Definition 2.8. A graph is chordal if every cycle of length greater than 3 has

a chord. Every tree is a chordal graph and a maximal outerplanar graph is also

chordal. The structure of the central subgraph has also been considered for chordal

graphs.

When an edge is added to a graph, the eccentricities of the nodes may be affected.

A graph G is diameter-maximal if for A graph G is a unique eccentric node graph

if each node in G has exactly one eccentric node.
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Theorem 2.9. A connected graph G is diameter-maximal if and only if

1. G has a unique pair of eccentric peripheral nodes u and v.

2. the set of nodes at each distance k from u induces a complete graph

3. every node at distance k is adjacent to every node at distance k + 1.

A disconnected graph is maximal if and only if G = Km ∪Kn

Corollary 2.10. Every diameter-maximal graph with odd diameter is a unique

eccentric node graph.

Proof : Let G be a diameter-maximal graph with odd diameter d. By the

above theorem, G has two peripheral nodes u and v . for each node w in G with

d(u, w) ≥ (d− 1)/2, u is its eccentric node; v is the unique eccentric node for all

other nodes in G. Thus G is a unique eccentric node graph.

Theorem 2.11. If G is connected chordal graph, then

d/2 ≤ r ≤ d/2 + 1

Corollary 2.12. If G is connected, self-centered, chordal graph with radius r,

then r = 1 or 2.

Proof : Since G is self-centered, r(G) = d(G). When r is even, the above

theorem gives r ≤ r/2 + 1,so r = 2. In the same way, we get r = 1 when r is

odd.

Theorem 2.13. A unique eccentric node graph G is self centered if and only if

each node of G is eccentric.
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Proof : Let G be a self centered unique centered node graph. For an arbitrary

node v, denote its eccentric node by v∗, so d(v, v∗) = r(G). Then v is the

eccentric node for v∗. Thus, each node of G is an eccentric node.

For the converse, we are given that each node v of an unique ecccentric node

graph G is an eccentric node. We first show that (v∗)∗ = v. Suppose not, and

without loss of generality, assume u has least eccentricity among eccentric nodes

v. Then u = x for some node x. Note that e(x) ≤ e(u). If e(x) = e(u) then

u∗ = x so (u∗)∗ = x∗ = u, a contradiction. Thus assume e(x) < e(u). Then

(x∗)∗ = u∗ 6= x and e(x) < e(u) contrary to the choice of u. Thus (v∗)∗ = v for

each v in G and e(v) = e(v∗).

Suppose r(G) < d(G). Then some pair of adjacent nodes w and v satisfy

e(w) < e(v). Their some pair of adjacent nodes w and v satisfy e(w) < e(v).

Their eccentric nodes satisfy e(w∗) = e(w) < e(v) = e(v∗), so w∗ and v∗ are

distinct. Since w∗ is unique for w, d(w, v∗) < d(w,w∗) which gives

d(v, v∗) ≤ d(v, w) + d(w, v∗) = 1 + d(w, v∗) < 1 + d(w,w∗)

So e(v) = d(v, v∗) < 1 + d(w,w∗) = 1 + e(w). Since e(w) and e(v) are integers,

e(v) ≤ e(w) a contradiction. Hence we must have r(G) = d(G) that is, G is

self-centered.

Theorem 2.14. For a tree T , f(T ) = 0 only for T = K1 or K2; f(T ) 6= 1or3. If

p ≥ 3, then f(T ) = 2 if and only if all end nodes of T have the same eccentricity.
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2.3 THE MEDIAN

The center of a graph is important in applications involving emergency facilities

where time to each single location in the region is critical. Sippose, instead we

consideer a service facility such as a post office, bank or power station. When

deciding where to locate a post office, we want to minimise the average distance

that a person serviced by the post office must travel. This is equivalent to

minimizing the total distance travelled by all people within the district.

Let G be a connected graph. The status s(v) of a node v in G is the sum of the

distances from v to each other node in G. The median M(G) of a graph G is the

set of nodes with minimum status. The m inimum status ms(G) of a graph G

is the value of minimum status; the total status ts(G) is sum of all the status

values. These concepts are illustrated in a following figure. The number near

each node is its status. The minimum status of G is 8, the total status is 70, and

the median consists of nodes b, d and e.

Theorem 2.15. Node v is a centroid node of a tree T if and only if it is a

median node.

.

Theorem 2.16. The median M(G) of any connected graph G lies within the

block of G.

Theorem 2.17. For each node v of a connected (p, q)- graph G,
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p− 1 ≤ s(v) ≤ (p− 1)(p+ 2)/2− q

and these bounds can be achieved for each q,p− 1 ≤ q ≤
(

p
2

)

Proof : The easy lower bound is achieved by any (p, q)- graph with some node

having degree p− 1. We use induction q to prove the upper bound holds. Since

G is connected, begin with q = p − 1, so G is a tree. For any node v, let di be

the number of nodes at distance i from v. Then,

s(v) = Σidi and σdi = p− 1

Note that if di = 0, then di+1 = 0. Thus the sum σidi is maximum when di = 1

for each i, so that

s(v) =
p−1
∑

i=1

= p(p−1)
2

= (p−1)(p+2)
2

− (p− 1)

By the inductive hypothesis, the upper bound hold for any connected (p, q)-graph.

Let v be an node in a connected (p, q + 1)-graph G. Then G is not a tree, so it

contains a cycle. Let u be a node in a cycle C such that d(u, v) is minimum for

such nodes . Let w be a node on C adjacent to u and consider G − uv. This

graph is connected (p, q)-graph. Because of the choice of u as a closest node to

v in a cycle, d(v, w) is greater in G− uw than in G. By inductive hypothesis,

s(v) ≤ −1 + (p−1)(p+2)
2

− q = (p−1)(p+2)
2

− (q + 1)

so the upper bound holds.

To show that the upper bound can be achieved for each value of q, p−1 ≤ q ≤
(

p
2

)

,

let t be the largest integer for which n = q − p + 1− t(t− 3)/2 is non-negative.
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Let G be the sequential join

K1 +K1 + ...+K1 +Kn +Kt−n

where there are (p− t)K ′
1s. This graph has p nodes and

(p− t− 1) + n +
(

n
2

)

+ n(t− n) +
(

t−n
2

)

edges. After simplifying and substituting for n, we find G is a (p, q)-graph. The

node v of degree 1 in G has status

s(v) =
p−t−1
∑

i=1

i+ (p− t)n+ (p− t+ 1)(t− n) = (p−1)(p+2)
2

− q

Definition 2.18. Analogous to self-centered graphs are the self median graphs

in which all nodes have the same status.

The median subgraph of a graph G is the induced subgraph 〈M(G)〉. If G is

disconnected, then all the nodes in G have the same status, so G is self median

and no embedding is required.Thus we may restrict attention to connected graphs.

Theorem 2.19. Every graph G has a supergraph H whose median subgraph is

isomorphic to G.

Proof : Let V (G) = v1v2...vp. Then form H as follows: add p new nodes

v′1v
′
2...v

′
p then join v′i to vi and to all nodes of G not adjacent to vi. It is easy to

check that in H , s(vi) = 3p− 2 while s(v′i) = 3p− 2 + di where di is the degree
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of vi in G. Since di ≥ 1,〈M(H)〉 = G

2.4 CENTRAL PATHS

If a superhighway is to be built connecting two major metropolitan areas so

that it has a total of ten exists serving to towns in between, along what path

should the highway be built and where should the exists be located to be most

convenient to the largest number of people? If the towns all have the same

political clout, the highway will be designed to minimise the maximum distance

from various towns to the closest exit.

There are other situations such as the installation of natural gas pipelines or

pipelines of irrigation, where one may want to find the path of all nodes in a

graph are close too. In this section, we discuss several concepts which involve

minimising the distance to a path in a graph.

Definition 2.20. Let G be a graph and let W be a subgraph of G. For any node

v in G, the distance d(v,W) from v to W is the minimum distance from v to a

node in W . The eccentricity of W, e(W ) is the distance to a node farthest from

W .Thus e(W ) = maxd(v,W ) for v in G.

The weightb(W ) of a set W of nodes in a graph G is the number of nodes in

the largest component of G −W . The path centroid of a graph G isa path with

minimum weight having minimum length among such paths.
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A tree to illustrate central paths

Theorem 2.21. The path center of a tree T is unique and it contains the center

C(T ).

Theorem 2.22. The path centroid of a tree T is unique and it contains centroid

of T

Proof : Let P be apath centroid and let k be the weight of the centroid node

in tree T . But we know that every tree has a centroid consisting of either one

or two adjacent nodes, the centroid consists of one or pair of adjacent nodes.

Assume P does not contain the centroid. Then P is a subgraph of one of the

branches at a centroid node and b(P ) ≥ k + 1. This is a contradiction since the

subgraph induced by the centroid is a path with smaller branch weight. Thus,

any path centroid contains the centroid.

Let W be the centroid of T , and let k be the weight of w ∈ W . Suppose

〈V (T ) −W 〉 contains three or more components with k nodes. Since a path P

through W contains nodes from at most two of these components, b(P ) ≥ k. In

this case, the shortest path is 〈W 〉. If 〈V (T )−W 〉 contains just two components

with k nodes,let u and v be the nodes from those components which are adjacent

to a node in W . With u and v are path centroid P , b(P ) < k, whereas if either

u or v is not in P , then b(P ) ≥ k. Thus both u and v are in the path centroid.
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Note that u and v each have minimum weight among the nodes adjacent to the

centroid.

Suppose a path P = v1v2...vn is known to be in the path centroid of T (n ≥ 2).

Let Xi be the set of nodes in V (T ) − V (P ) which are adjacent to vi If u ∈ X1

and b(u) < b(v) for all v ∈
⋃

Xi − u, then P ′ = uv1v2...vn has b(P ′) < b(P ),so

u is in the path centroid. If u1 ∈ X1 and un ∈ Xn such that b(u1) = b(un) for

all v ∈
⋃

Xi−{u1, un}, then P ′′ = u1v1v2...vnun and both u1 and un are in path

centroid. In all other cases, P cannot be extended to a path with similar weight.

Definition 2.23. The status s(P ) of a path P in a graph G is the sum of the

distances d(c, V (P )) for all v ∈ V (G).A path with minimum status is a core or

path median of G.

For each v in G , let t(v) be the maximum difference between s(v) and s(P )

where P is a nontrivial path woith v as endnode. A node v in G for which t(v)

is minimum is called a pit node and the set of such nodes is the pit in G.

2.5 OTHER GENERALISED CENTERS

The central paths of previous section are one type of generalised center.

They are special cases of more general classes of problems- n-centers, n-medians,

n-centroids. When locating the set S of 3 fire houses to protect retirement

communities, this is an n-center problem. A path center is an n-center for which

the n nodes in S form a path. The problem where to locate a pizza store is an

n-median problem. here we discuss n-centers, n-medians, the cutting center, tha
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path centrix, and several other generalized centers.

Definition 2.24. The cutting number c(v) of a node v in a connected graph G is

the number of pairs of nodes {u, w} such that u and w are in different components

of G − v. The cutting center CC(G) of a graph G is the set of all nodes with

maximum c(v); a node in CC(G) is called cutting center node. Clearly, c(v) > 0

if and only if v is a cutnode. Cutting centers have been studied mainly for trees,

where every non node has positive cutting number.It has also been shown that

there are trees with an arbitraily large cutting center as well as trees with two

cutting center nodes which are arbitrarily far apart from one another.
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Chapter 3

CONNECTIVITY

3.1 INTRODUCTION

Computer and telecommunication networks are often modeled by graphs. It

is useful to know the reliability of a telecommunication network. That is, if

one or two pieces of equipment fail, is it still possible for communication to

proceed uninterupted? Network reliability problems are modelled by graphical

networks where a number associated with each node and each edge represents

the probability that the piece of hardware or connecting lines without fail. A

related concept vulnerability which is the susceptibility of a network to successful

attack by adversaries

The connectivity of a graph in a particularly intutive area of graph theory

and extends the concepts of cutnode, bridge and block. Two variants called

connectivity and edge-connectivity are used in deciding which two graphs are

more connected.
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3.2 CONNECTIVITY AND EDGE-CONNECTIVITY

Definition 3.1. The connectivity κ = κ(G) of a graph G is the minimum

number of nodes whose removal results in a disconnected or trivial graph.Thus the

connectivity of a disconnected graph is 0, while the connectivity of a connected

graph with a cutnode is 1. The complete graph Kp cannot be disconnected by

removing p− 1 nodes; therefore, κ(Kp) = p− 1

Analogously, the edge-connectivity κ′ = κ′(G) of a graph G is the minimum

number of edges whose removal results in disconnected or trivial graph. Thus

κ′(K1) = 0 and the edge-connectivity of a disconnected graph is 0, while that of

a connected graph with a bridge is 1.

Theorem 3.2. For any graph G, κ(G) ≤ κ′(G) ≤ δ(G)

Proof : We first verify the second inequality. If G has no edges, then κ′ = 0.

Otherwise, a disconnected graph results when all the edges incident with a node

of minimum degree are removed. In either case κ′ ≤ δ.

To obtain the first inequality, various cases are considered. If G is disconnected

or trivial, then κ = κ′ = 0. If G is connected and has a bridge e, then κ′ =

1.In this case κ = 1 since either G has a cutnode incident with e or G is K2.

Finally,suppose G has κ′ − 1 of these edges produces a bridge e = uv. For each

of these κ′−1 edges, select an incident node different from u or v. If the removal

of these nodes produces a disconnected grpah then κ < κ′; if not , then e = uv

is a bridge, and hence the removal of u or v will result in either a disconnected

or trivial graph, so κ ≤ κ′ in every case.
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Theorem 3.3. For all integers a, b, c such that 0 < a ≤ b ≤ c, there exists a

graph G with κ(G) = a, κ′(G) = b, and δ(G)− c

Theorem 3.4. If a graph G has p nodes and the minimum degree δ(G) ≥ ⌊p/2⌋,

then κ′(G) = δ(G)

For example, if G is regular degree r ≥ ⌊p/2⌋, then κ′(G) = r. In particular,

κ′(Kp) = p− 1.

Theorem 3.5. Among all graphs with p nodes and q edges, the maximum connectivity

is 0 when q < p− 1, and is ⌊2q/p⌋ when q ≥ p− 1

Proof : Since the sum of the degrees of the nodes in any (p, q)- graph is 2q, the

average degree is 2q/p. Therefore, δ(G) ≤ ⌊2q/p⌋, so κ(G) ≤ ⌊2q/p⌋ by theorem

3.1. To show that this value can be actually be attained, an appropriate family

of graphs can be constructed.
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A graph with 0 ≤ κ ≤ κ′ ≤ δ
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Corollary 3.6. The maximum edge-connectivity of a (p, q)-graph equals the

maximum connectivity.

Definition 3.7. A graph G is n-connected if κ(G) ≥ n and n-edge connected if

κ′(G) ≥ n. Thus a non trivial graph is 1-connected if and only if it is connected

and 2-connected if and only if it is non separable graph that is not 2-connected.

Theorem 3.8. If G is connected, n ≥ 2, then every set of n nodes of G lie on

a cycle.

Theorem 3.9. A graph G is 3-connected if and only if it is a wheel or can be

obtained from a wheel by a sequence of operations of the following two types:

1. the addition of a new edge.

2. the replacement of a node v having at least 4 by a pair of adjacent nodes v1, v2

such that in the resulting graph, each node is joined to exactly one of v1 and v2

and deg v1 ≥ 3 and deg v2 ≥ 3.

Theorem 3.10. If G is connected, n ≥ 2, then its line graph L(G) is also

n-connected.

Proof : Let G be n-connected and suppose that κ(L(G)) < n. Then removing

κ < n nodes from L(G) will produce either a disconnected or trivial graph. Each

node of L(G) corresponds with an edge of G with two nodes of L(G) adjacent

if and only if the corresponding edges of G are incident. Thus, by removing
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κ < n edges from G, we can produce either a disconnected or trivial graph,

that is, κ′(G) < n. But from thm 3.1, implies κ < κ′ < n, a contradiction. So

κ(L(G)) ≥ n, that is, L(G) is n-connected.

Theorem 3.11. If G is n-connected, n ≥ 2, then every set of n nodes of G lie

on a cycle.

By taking G to be a cycle Cn, it is seen that the converse is not true for n > 2.

Theorem 3.12. A graph G is 3-connected if and only if it is a wheel or can be

obtained from a wheel by a sequence of operations of the following two types:

1. The addition of new edge.

2. The replacement of a node v having degree at least 4 by a pair of adjacent

nodes v1, v2 such that in the resulting graph, each node is joined to exactly one

of v1 and v2 and degv1 ≥ 3 and degv2 ≥ 3.

Theorem 3.13. If G is n connected, n ≥ 2 then its line graph L(G) is also

n-connected.

Proof : Let G br n-connected and suppose that κ(L(G)) < n. Then removing

k < n nodes from L(G) will produce either a disconnected trivial graph. Each

node of L(G) corresponds with an edge of G with two nodes of L(G) adjacent if

and only if the corresponding edges of G are incident. Thus by removing k < n
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edges from G, we can produce either a disconnected or trivial graph, that is,

κ′(G) < n. But by theorem 3.1, then implies κ < κ′ < n, a contradiction. So

κ(L(G)) ≥ n, that is, L(G) is n-connected.

Theorem 3.14. For all integers a and b, 1 < a < b, there is a graph G such

that κ(G) = a and κ(L(G)) = b.

3.3 MENGER’S THEOREM

In 1927 Menger showed that the connectivity of a graph is related to the

number of disjoint paths joining two nodes. Many of the variations and extensions

of Menger which have since appeared have been graphical, and we discuss some

of these here.

Let u and v be two nodes of a connected graph G. Two paths joining u and

v are disjoint if they have no nodes other than u and v in common; they are

edge-disjoint if they have no edges in common. A set of S nodes, edges, or both

separates u and v if u and v are in different components of GS. Clearly, no set of

nodes can separate two adjacent nodes. In the following figure we display a graph

with two nonadjacent nodes s and t which can be separated by removing three

nodes but no fewer. The classical theorem of Menger guarantees the existence

of three node-disjoint paths joining s and t.
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Theorem 3.15. The minimum number of nodes separating two non adjacent

nodes s and t equals the maximum number of disjoint s− t paths.

Proof : It is clear that if k nodes separate s and t, then there can be no more

than k disjoint paths joining s and t.

It remains to show that if it takes k nodes to separate s and t in G, there are k

disjoint s− t paths in G. This is certainly true if k = 1. Assume it is not true for

some k > 1. Let h be the smallest such k, and let F be a graph with minimum

number of nodes for which the theorem fails for h. We remove edh=ges from F

until we obtain a graph G such that h nodes are required to separate s and t in

G but for any edge e in G, only h− 1 nodes are required to separate s and t in

G− e. We first investigate the properties of G.

By the definition of G, for any edge of G there exists a set S(e) of h − 1 nodes

which operates s and t in G− e. Now G− S(e) contains atleast one s− t path,

since it takes h nodes to separate s and t in G.Each such s − t path P must

contain the edge e = uv since P is not a path in G − e. So u, v /∈ S(e) and if

u 6= s, t, then S(e) ∪ u separates s and t in G.
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If there is a node w adjacent to both s and t in G,then G − w requires h − 1

nodes to separate s and t so it has h − 1 disjoint s − t paths. Replacing w, we

have h disjoint s− t paths in G. Thus we have shown.

1. No node is adjacent to both s and t in G.

Let W be any collection of h nodes separating s and t in G. An s−W path is

a path joining s with some wi ∈ W and containing no other node of W . Call

all the collection of s−W paths and W − t paths Ps and Pt respectively. Then

each s − t path begins with a member of Ps and ends with a memeber of Pt,

because every such paths in each collection and is some other node were in both

an s−W and E − t path, then there would be an s− t path containing no node

of W . Finally, either Ps −W = {s} or Pt −W = {t} since, if not, then both Ps

plis the edges {w1t, w2t, ...} and Pt plus the edges {sw1, sw2, ...} are h-connected

graphs with fewer nodes than G in which s and t are nonadjacent, and therefore

in each there are h disjoint s− t paths. Combining the s−W and W − t portions

of these paths, we can construct h disjoint s− t paths in G, and thus we have a

contradiction. Therefore we proved.

2. Any collection W of h nodes separating s and t is adjacent either to s or to t.

Now we can complete the proof. Let P = {s, w1, s2, ..., t} be a shortest s− t path

in G and let u1, u2 = z. Note that by (1), u2 6= t. Form S = {v1, v2, ..., vh−1} as

above, separating s and t in G− x. By (1),u1t /∈ G, so by (2), with W = S(x)∪

{u1}, svi ∈ G∀i. Thus by (1),vit /∈ G∀i. However, if we pick W = S(x) ∪ {u2}

instead, we have by (2) that su2 ∈ G, contradicting our choice of P as shortest

s− t path.
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Corollary 3.16. A graph G is n-connected if and only if every pair of nodes are

joined by at least n node disjoint paths.

Definition 3.17. The local connectivity of two non adjacent nodes u and v of a

graph is denoted by κ(u, v) and is defined as the smallest number of nodes whose

removal separates u and v. In these terms, Menger theorem asserts that for any

two specific non adjacent nodes u and v, κ(u, v) = µ0(u, v), the maximum number

of node-disjoint paths joining u qand v.

Theorem 3.18. For any two nodes of a graph, the maximum number of edge

disjoint paths joining them equals the minimum number of edges that separates

them.

Theorem 3.19. A graph is n-edge connected if and only if every pair of nodes

are joined by at least n edge-disjoint paths.

Theorem 3.20. For ant two disjoint nonempty sets of nodes V1 and V2, the

maximum number of disjoint paths joining V1 and V2 is equal to the minimum

number of nodes which separate V1 and V2.
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3.4 PROPERTIES OF N-CONNECTED GRAPHS

A collection of paths of a graph is an independent set if no two of them have

anode in common. If each path in an independent set M of paths is an edge,

then M is a matching of G. Thus a matching in a graph G is a set of edges of

G, no two of which have a node in common.

Theorem 3.21. A graph with at least 2n nodes is n-connected if and only if for

any two disjoint sets V1 and V2 of n nodes each, there exist n independent paths

joining tw sets of nodes.

Proof : To show the sufficiency condition, we form a graph G′ from G by adding

two new nodes w1 and w2 with wi adjacent to exactly the nodes Vi = 1, 2.

Since G is n connected, so is G′ and hence there are n disjoint paths joining

w1 and w2. The restrictions of these paths to G are clearly the n independent

V1 − V2 paths.

To prove the other half, let S be the set of at least n− 1 nodes which separates

G into 1 and G2. with node sets V ′
1 and V ′

2 respectively. Then since, |V ′
1 | ≥

1, |V ′
2 | ≥ 1, and |V ′

1 | ≥ 1 + |V ′
2 | ≥ 1 + |S| = |V | ≥ 2n, there is a partition of S

into two disjoint subsets |S1| and |S2| such that |V ′
1 ∪ S1| ≥ n and.|V ′

2 ∪ S2| ≥ n.

Picking any n nodes each. Every path joining V1 and V2 must contain a node of

S1 and since we know that there are n independent V1 − V2 paths, we see that

|S| ≥ n, G is connected.

47



Theorem 3.22. In any graph, the maximum number of edge-disjoint cutsets of

edges separating two nodes u and v is equal to the minimum number of edges in

a path joining u and v that is the distance d(u, v)

Definition 3.23. Define a line of matrix as either a row or column. Every entry

of a binary matrix is 0 or 1. In a binary matrix M , a collection of lines is said

to cover all the unit entries of M if every 1 is in one of these lines. Two 1’s of

M are called independent if they are either in the same or row nor in the same

direction.

A node and an edge are said to cover each other if they are incident. A node

cover of a graph G is a set of nodes which together covers all the edges of G. A

matching that covers all the nodes of a grpah G is called perfect matching.

Theorem 3.24. There exists a system of n representatives for a family of sets

S1, S2, ..., Sm if and only if the union of any k of these sets contain at least k

elements, for all k to 1 to m.

Theorem 3.25. If G is bipartite, then the number of edges in the maximum

matching equals the minimum number of nodes required to cover all the edges of

G.

Theorem 3.26. Let G be a graph of order p ≥ 2 whose node degrees di satisfy

d1 ≤ d2 ≤ .... ≤ dp. Let n be an integer. 1 ≤ n ≤ p− 1. if,

dk ≤ k + n− 2⇒ dp−n+1 ≥ p− k
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for each k such that 1 ≤ k ≤ 〈(p− n+ 1)/2〉, the G is connected.

Proof : Suppose G satisfies the conditions, but κ(G) < n. Then there exists a

set S of at most n nodes whose removal disconnects G. Consider the smallest

component H of G − S and call its order k. Then k ≤ 〈(p− n + 1)/2〉 and the

largest degree of a node in H is at most k + n− 2 < p− k. Thus dk ≤ k+ n− 2

and the hypothesis of the thorem then implies that dp−n+1 ≥ p − k. Since each

node in V (G)−V (H)−S has degree atmost p− k− 1 and nodes in H also have

degree less than p− k, only vertices in S have degree at least p− k. Now since

dp ≥ dp−1 ≥ ... ≥ dp−n+1 ≥ p − k, S contains at least n nodes, a contradiction.

Thhus G is connected

3.5 CIRCULANTS

In the first section, we noted that among all graphs with p nodes and q edges,

q ≥ p − 1, the maximum connectivity is 〈2q/p〉 and this bound can always be

attained. A chief reason for the importance of connectivity is its relation to

the reliability and vulnerability of large scale computer and telecommunication

networks.

Definition 3.27. Maximum connectivity graphs plays an important role in the

design of reliable networks. In this section, we discuss a class of graphs known

as circulants which contains those graphs. For a given positive integer, let

n1, n2, ..., nk be a sequence of integers where
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0 < n1 < n2 < ... < nk < (p+ 1)/2

Then the circulant graph Cp(n1, n2, ..., nk) is the graph on p nodes v1, v2, ...., vp

with vertex vi adjacent to each vertex vnj(modp). The values in ni are called jump

sizes.

Theorem 3.28. The circulants Cp(n1, n2, ..., nk) satisfies k < δ if and only if

for some proper divisor m of p, the number of distinct positive residues modulo

m of the numbers n1, n2, ..., nk, p− nk, ..., p− n1 is less than min{m− 1, δm/p}.

Definition 3.29. A regular graph with κ = δ for which the only minimum size

disconnecting sets of nodes consists of the neighbourhoods of single nodes is called

super-κ graph. Similarly, a regular graph with κ′ = δ for which each minimum

sized disconnecting sets of edges isolates a single node is called a super-κ′ graph.

Definition 3.30. Let A be a set of all (p, q)-graphs G for which κ′(G) = κ′. A

graph G∗ ∈ A is κ′-optimal if it has the minimum number of disconnecting sets

of edges of size κ′ among all graph in A.

A regular graph with κ = δ for which the only minimum size disconnecting sets

of nodes consists of neighbourhoods of single nodes is called a super-κ graph.

Similarly, a regular graph with κ′ = δ for which minimum sized disconnecting

sets of edges isolates a single node is called a super-κ′ graph.
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Definition 3.31. When designing a communication network, one not only wants

ti maximize the connectivity and edge-connectivity but also to minimize the diameter

as well as the number of the edges. By minimizing the diameter, transmission

times are kept small and the possibility of distortion due to a weak signal is

avoided. Minimising the number of edges will keep down the cost of building the

network. Of course, one cannot have everything that is, in general one cannot

simultaneously maximise κ and κ′ while maximising |E| and d(G).

Definition 3.32. Two elements of a lattices are incomparable if neither dominates

the other. By a chain in a lattices is meant a downward path from upper element

to a lower element in the Hasse diagram of lattice.

A graph G is k-critically n-connected if for all S ⊂ V (G) with |S| ≤ k, we have

κ(G− S) = n− |S|.

The edge persistence of a graph is the minimum number of edges that must be

removed to increase its diameter.
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Chapter 4

EXTREMAL DISTANCE

PROBLEMS

4.1 INTRODUCTION

Let f be a real valued function whose domain is the set of all graphs and letP

be any graphical property. As with the topics discussed in the previous chapters,

extremal graph theory is an area on which whole book could be written. In

this chapter we focus our attention on extremal problems relating to radius,

diameter,and long paths and cycles in graphs.

4.2 RADIUS

In chapter 2 we defined the radius r(G) of a connected graph G as the

minimum eccentricity of its nodes and the center C(G) as the set of all nodes v
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with e(v) = r(G). Center plays an important role in a number of facility location

problems. Since r(G) is a real valued function, in fact positive integer valued,

the radius could play the role of the function f in the extremal graph paradigm.

However in many extremal problem, r(G) instead plays a role in property P .

Definition 4.1. For any connected graph G, it is easy to generate a spanning tree

T of G for which the distances from a fixed node v are preserved. One simply

uses the well known breath first search algorithm with roor v. This algorithm

begins at a node v and branches out to its neighbours u, including the edges uv

in the tree. Next, the edges joining those nodes at distance one from v with

nodes at a distance two from v are indicated so as not to form any cycles. this

process continues until a spanning tree is formed. The process is illustrated in the

following figure where the central node ,the spanning tree T will have the same

raduis as G. Such a tree is called radius preserving spanning tree.

If one removes an edge from a graph G, it is clear that the radius may increase

or stay the same, but it certainly could not decrease. A graph G is called radius

minimal if r(G− e) > r(G) for every edge e in G.

53



b b

b

b

b

b b

b

b b

b b

b

b b

b b

b

bbb

a b

c d e

f g

k

j

f h

a

d

e

c

a b

f h j

d e

k

A breath first search at a node

Theorem 4.2. A nontrivial graph G is radius minimal if and only if G is a tree.

Proof : If G is a tree, then clearly G is radius minimal since the removal of any

edge will disconnect G, resulting in an infinite radius.

If G is radius-minimal, then r(G) must be finite so G is connected. Assume that

G is connected and not a tree. Then G has a radius preserving spanning tree T

which necessarily has fewer edges than G. Thus it is possible to remove an edge

from G without decreasing the radius. Hence a radius-minimal graph must be a

tree.

Next we consider graphs whose radius is altered by the removal of any node. A

nontrivial graph G is called r-critical, or briefly r-critical, if for every node v in

G, r(G − v) 6= r(G). Every even path P2n is critical. By removing an endnode

of P2n, the radius decreases by one, but removing an internal node of P2n makes

the radius unbounded. It is a simple observation that if G is an r-critical graph

and v is one of its nodes, then r(G− v) < r(G) if and only if v is a peripheral
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node, and in this case r(G− v) = r(G)− 1

The class of r-critical graphs can be partitioned into three sets:

r-decreasing graphs for which r(G− v) = r(G)− 1∀v;

r-increasing graphs for which r(G− v) > r(G)− 1∀v;

r-changing graphs which comprise all other r-critical graphs.

Thus each r-changing graph contains at least one node v for which r(G − v) >

r(G) and one node u for which r(G − u) < r(G). The following figure gives an

example of r-changing graph and r-decreasing graph.

r changing graph

r decreasing graph

b

b b

b b

b

b

b

b

b

Theorem 4.3. Every connected r-critical graph G is either r-decreasing or

consists of an r-decreasing subgraph H and endpaths so that one endpath of length

r(G)− r(H) is joined to each node of H.

Corollary 4.4. There are no r increasing graphs.

Theorem 4.5. A graph.0 G of radius 2 is r-critical if and only if it is either the

path P4 or the complete multipartite graph K(2, 2, .., 2) with n ≥ 2 parts.
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4.3 SMALL DIAMETER

Definition 4.6. One of the earlier results for graphs with small diameter concerns

a special class of graphs called moore graphs. The distance degree sequence of a

node v is dds(v) = (d0(v), d1(v), ..., de(v)(v)), where di(v) is the number of nodes

at distance i from v. If every node of G has the same distance degree sequence

then G is called distance degree regular. A Moore graph is a DDR graph, so

it is self-centered and self-median. Hence any node could play the role of the

peripheral node v. The girth of a graph is the length of the any shortest cycle.

These are special examples of a class of highly symmetric graphs called cages.

Deleting an edge from a graph may cause its diameter to increase or stay the

same, but it cannot decrease. A graph G is diameter-minimal if for all edges

e ∈ G, d(G − e) > d(G). Any edge that can be removed from G without

affecting the diameter is called superfluous. Thus diameter-minimal graphs are

the graphs with no superfluous edges. Suppose that G has diameter 2. Then

every superfluous edge e = uv is contained in a triangle, since otherwise removal

of e would make d(G) ≥ d(u, v) ≥ 3.

Theorem 4.7. Every graph G can be imbedded as an induced subgraph in a

diameter-minimal graph of diameter 2.

Proof : Label the nodes ofG by v1, v2, ..., vp. Next, add new nodes w, x, u1, u2, ..., up+1

and edges viui, wup+1, and xui. Finally, for each pair of distinct non adjacent

nodes vi, vj insert the edge u, uj. It is easy to verify that the resulting graph is
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diameter-minimal, has diameter 2 and has G induced subgraph.

Definition 4.8. A graph G is diameter-critical if d(G − r) 6= d(G) for every

node v ∈ G. Note that in a diameter-critical graph G, some nodes of G may

cause the diameter to increase when removed while others can cause to decrease.

For example, if G consists of C7 with a endedge attached, then removal of the

node of degree one would cause the diameter to decrease, whereas the removal of

any other node increases the diameter.

Theorem 4.9. Let G be a connected graph and let X be the set of all nodes x

for which d(G− x) < d(G). Then |X| ≤ 2 and d(G− 2) ≤ d(G−X) ≤ d(G)− 1

for X 6= ∅.

Proof : If x ∈ X then dG(u, v) ≤ d(G − x) < d(G)∀u, v ∈ G − x. Hence if

d(y, w) = d(G) for some pair of nodes y, w ∈ G, then y or w must be x. So each

node in X is peripheral. Any pair of nodes x, x′ ∈ X must be antipodal nodes

or else removing one of them could not decrease the diameter. But then if X

contains three or more nodes, removal of one node say x∗ would still leave an

antipodal pair of nodes at distance d(G) from one another inG−x∗, contradicting

the fact that d(G− x∗) < d(G). Thus |X| ≤ 2.

Definition 4.10. A graph G is d-increasing id d(G − v) > d(G)∀v ∈ G and

d-decreasing if d(G− v) < d(G)∀v ∈ G
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Theorem 4.11. Let G be a diameter-critical graph of diameter d ≤ 3 that is not

d-decreasing. Then G is a path of length d.

Trees of Small Diameter: Although there are infinitely many trees of

diameter at most there, they are easy to describe. They are the graphs K1, K2,

the stars K1,n and the double stars Sm,n =Km +K1 +K1+Kn. These trees have

been used in various situation in the literature, perhaps the most interesting of

which in decomposition problems or in packing problems.

The slight difference between packing problems and decomposition problems is

one of generality. In a typical packing problems, one begins with a well known

class of graphs like Kp and wants to determine whether to colour the edges of

the graph so that the colour determines some fixed set of trees of small diameter.

Theorem 4.12. Suppose T2, T3, ..., Tp are trees such that Ti, has order i and

d(Ti) ≤ 3. Then T2, T3, ..., Tp can be packed into Kp.

Definition 4.13. Recall that a graph is non-separable if it is connected and has

no cutnodes. Such a graph has only one block, and for that reason, the graph

itself is often called a block. A block G is minimal G− e is not a block for each

edge e ∈ G

Theorem 4.14. The minimal blocks of diameter 2 are as follows;

1. K2,p−2 with p ≥ 4

2. The graph formed from the double star by adding a node v and joining v to
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each endnode of Sm,n.

4.4 DIAMETER

Theorem 4.15. For any graph G and integer k ≥ 4, there exists a diameter-critical

graph H with diameter k containing G as an induced subgraph.

Proof : Begin by adding additional node v1,0 to G and joining v1,0 to each node

of G to form graph F . Label the nodes of G by v1,t, 1 ≤ t ≤ p. Next take a copy of

F̄ with nodes vk−1,t, 0 ≤ t ≤ p. Add additional nodes vi,t, 2 ≤ i ≤ k−2, 0 ≤ t ≤ p

and join each pair of nodes v1,tand vk−1,t by the path v1, v|2, ..., vk−1. Finally add

two more nodes u and w join u to w and to all nodes.

It is easy to check the resulting graph H has diameter d and it clearly contains

G as an induced subgraph. It remains to verify that H is diameter-critical.

Graph H − w has diameter d − 1 and d(H − u) = ∞. Upon removal vi,j with

2 ≤ i ≤ k−1, one finds the distance d(w, vi,j) > k in G− vi,j > k. Removing vi,j

yields the distance d(v2,j, x) > k in G − v1,j for x ∈ NF (vi,j). Hence each node

alters the diameter. So H is diameter-critical.

Theorem 4.16. Let G 6= K2 be a diameter-critical graph on p nodes. Then

δ(G) ≤ 〈(p− d+ 1)/2〉.

Theorem 4.17. For any (p, q)-graph of diameter d, we have q ≤ d+ 1
2
(p− d+
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1)(p− d+ 4).

Definition 4.18. A connected noncomplete graph G is n-geodetically connected

if the removal of at least n nodes are required to increase the distance between

every pair of nonadjacent nodes. The geodetic connectivity is the maximum n

such that G is n-geodetically connected. If G is n-geodetically connected, then it

is obviously n-connected, but the converse is not true. For example, the graph

K4+¯K2 is 3-connected , but only 2-geodetically connected. Note that every graph

with geodetic connectivity equal to one is diameter-critical.

Theorem 4.19. The following assertions are equivalent for a graph G:

1. G is n-geodetically connected.

2. G is connected and every two nodes at distance two from one another are

joined by at least n geodesics.

3. For every pair of distinct nonadjacent nodes u and v any set of m ≤ n disjoint

u− v geodesics is contained in a set of n disjoint u− v geodesics.

4. For any n + 1 distinct nodes v0, v1, ..., vn, G contains disjoint v0 − v1, v1 −

v2, ..., v0 − vn geodesics.

Among all invariants studied in connection with diameter extremal problems

except maximal degree, connectivity has played an important role. It has generated

the most interest in problems involving regular graphs. A minimum (t, k, n)-graph

is an n-regular graph G of minimum order with κ(G) = k and diameter d(G) = t.
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Theorem 4.20. A diameter maximal graph G of diameter t ≥ 4, connectivity n

and order p having the maximum number of edges has the form

K1 +Kn +Ka2 + ... +Kat−2 +Kn +K1

with ai = n for each i except possibly one or two consecutive ai for which ai > n.

Theorem 4.21. A diameter maximal graph G of diameter t ≥ 6, connectivity n

and order p having the maximum number of edges has the form

K1 +Kn +Ka2 + ... +Kat−2 +Kn +K1

where every triple (ai−1, ai, ai+1),3 ≤ i ≤ t − 3, except possibly one, contains

exactly n−1 nodes. The exceptional triple is either (a2, a3, a4) or (at−4, at−3, at−2)

4.5 LONG PATHS AND LONG CYCLES

Definition 4.22. Recall that a trial is a walk in which no edge appears more

than once. Thus in a trial, nodes can be revisited, but edges cannot. In a path,

neither nodes nor edges may be repaeated. The trial number tr(G) of a grpah G

is the maximum length of a trial in it.

Theorem 4.23. The maximum trial number among all graphs on p nodes and

q edges is
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tr(G) ≤ qpodd or q ≤
(

n
2

)

− n
2
+ 1

(

n
2

)

− n
2
+ 1 otherwise

Proof : If p is odd then Kp is eulerian and the p nodes of Kp along with the first

q edges of any eulerian trial of Kp form a (p, q)-graph G with tr(G) = q. If p is

even, then Kp − (p
2
− 1)K2 has a spanning trial that includes every edge. Hence

for q ≤
(

n
2

)

− n
2
+1, the first q edges in such a trail again produces a (p, q)-graph

G withg tr(G) = q. On the other hand, if p is even, tr(G) can be no larger than
(

n
2

)

− n
2
+1 since any subgraph H formed by the edges of a trial in G has at most

two nodes of degree p− 1. So

tr(g) = |E(H)| ≤ 1
2
(2(n− 1) + (n− 2)2) =

(

n
2

)

− n
2
+ 1

b b b b b b

b

b

b

b b

b b

5 4 4 4 4 5

4
4 4

4
3

4 4

A graph with all diametral paths avoiding center

Theorem 4.24. Suppose that all diametral paths of G avoid the center then,

r(G) + 2 ≤ d(G) ≤ 2r(G)− 1

Definition 4.25. A detour in a graph G is a path of maximum length and the

length of such a path is called detour number dn(G).

Let ω(H) denote the number of components in a graph H. A graph G is t-tough
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if each subset S ⊂ V (G) with ω(G− S) > 1 satisfies

|S|/ω(G− S) ≥ t

The toughness of a graph is the maximum value of t for which it is t-tough.
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b

b

b

bbb

b

b

b

A graph with only 12 nodes having
a detur avoiding each given node

Theorem 4.26. If G is a connected graph on p nodes then,

dn(G) ≥ min{p− 1, 2δ(G)}

Theorem 4.27. If G is 1-tough with order p ≥ 3 such that degu+ degv ≥ k for

all distict adjacent nodes u, v, then the circumference of G is atleastmin{p, k+2}.

Theorem 4.28. Suppose that G is 1-tough with order p ≥ 3 such that degu +

degv+degw ≥ k for all independent triples of nodes u, v, w.Then the circumference

of G is at least min{p, p/2 + k/3}.

Theorem 4.29. let G be 2-connected graph with order p and let k be an integer

with 3 ≤ k ≤ p. If for all pairs of nodes u, v at distance two from one another
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max{degu, degv} ≥ k/2, then the circumference of G is at least k.

Theorem 4.30. For a graph G, if k ≥ 3 is an odd positive integer and let

δ(G) ≥
(k + 1)k

k
or q ≥

(k + 1)k − k − 1

k

then for every natural number t, G contains a cycle of length tmodK.

Theorem 4.31. Let k ≥ 3 be a fixed positive integer. IF G is a 2-connected

non-bipartite graph on p nodes with ω(G) ≥ 2p/(k + 2), then for p large either

G contains the cycle Ck or G is isomorphic to the graph obtained from Ck+2 by

replacing each of its nodes.
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Induced subgraphs of G with
g(G) = 3

Definition 4.32. Let G be a graph with diameter d(G) = n. Then its clique

graph K(G) has diameter n + 1 if and only if G has cliques C and D such that

d(x, y) = n for every pair of nodes x ∈ C and y ∈ D.

A graph G is diameter edge invariant if its diameter is unchanged by the deletion
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of an edge, that is, d(G− c) = d(G)∀c ∈ G.
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Chapter 5

DISTANCE SEQUENCES

5.1 INTRODUCTION

A sequence for graph is simply an invariant which consists of a list of numbers

rather than a single number. The advantage of studying and using a sequence is

that it is often nearly as easy to calculate as a single numerical invariant yet it

carries far more information about the graph it represents. In this chapter, we

discuss a number of distance related sequences for a graph, display their relation

to one another a well as to various concepts in graph theory.

5.2 THE ECCENTRIC SEQUENCE

A sequence is graphical if there is a graph which realises S. Before discussing

the eccentric sequence, we present results on the only graph sequence which

predated it.
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Theorem 5.1. The sequence D = (d1, d2, ..., dp) with

p− 1 ≥ d1 ≥ d2 ≥ ... ≥ dp

is a graphical sequence iff the modified sequence

D′ = (d2 − 1, d3 − 1, ..., dd1+1 − 1, dd1+2, ..., dp)

is a graphical degree sequence.

Proof : If D′ is a graphical degree sequence, then so is D, since from a graph

with degree sequence D′ one can construct a graph with degree sequence D by

adding a new node adjacent to the nodes having degrees d2−1, d3−1, ..., dd+1−1.

Now let G be a graph with degree sequence D. If anode of degree d1 is adjacent

to nodes of degree dk for k = 2 to d1 + 1, then the removal of this node results

in graph of degree sequence D′.

Suppose that G has no such node. We will show that from G one can always

get another graph with degree sequence D having such a node. We assume that

the nodes in G are labelled so that degvi = di and that v1 is a node of degree d1

for which the sum of the degrees of the adjacent node is maximum. Then there

are nodes vi and vj with di < dj such that v1vj is an edge but v1vi with di > dj

such that v1vj is an edge but not to vj . Removal of a the edges v1vj and vkvi

and the addition of v1vi and vkrj results in another graph with degree sequence

D. But in this new graph, the sum of the degrees od the nodes adjacent to v1 is

greater than before since v1 is now adjacent to vi rather than vj . By repeating
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this edge-switching process a finite number of times, we obtain a graph with

degree sequences D in which v1 has the desired property.

Algorithm:

The sequence D = (d1, d2, ..., dp) with p − 1 ≥ d1 ≥ d2 ≥ .. ≥ dp is a graphical

degree sequence iff the following procedure results in a sequence with every term

zero.

1. Determine the modified sequence in D′ as described in above theorem.

2. Reorder the terms of D′ so that they are in nonincreasing order, and call the

resulting sequence D1

3. Determine the modified sequence Dn of D1 as in step 1 and reorder D′′ as in

step 2 call the recorded sequence D2.

If a sequence at an intermediate stage of the algorithm is known to be agraphcial

degree sequence stop, since D itself is then established be one also.To illustrate

we test the sequence

D = (5, 5, 3, 3, 2, 2, 2)

D′ = (4, 2, 2, 1, 1, 2)

D1 = (4, 2, 2, 2, 1, 1)

D′′ = (1, 1, 1, 0, 1)

D2 = (1, 1, 1, 1, 0)

Clearly, D2 is a graphical degree sequence si D is also.
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V6

V7

An example for above algorithm

Definition 5.2. The eccentric sequence of a connected graph G is a list of the

eccentricities of its nodes in non decreasing order. Since there are often many

nodes having the same eccentricity, we will simplify the sequence by listing as

em1

1 , em2

2 , ..., emk

k

where ei are eccentricities (ei < ei+1) and mi is the multiplicity of ei.

Some simple observations about the values of ei and mi for a non trivial connected

graph are as follows:

1. Since for each pair of adjacent nodes u, v and ant third node w,|d(u, w) −

d(v, w)| ≤ 1, it follows that the ei are consecutive positive integers.

2. e1 = r(G) and ek = d(G),so 1 ≤ ei ≤ p− 1

3. Since there must be apair of diametral nodes, mk ≥ 2.

4. Since the diameter is at most twice the radius, ek ≤ 2e1.

Theorem 5.3. For p ≥ 2, mi ≥ 2 except possibly for m1.

Proof : Since the ei are consecutive positive integers, there is at least one node

of eccentricity t for each integer t, e1 < tleqek. Let u be anode with eccentricity
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t > e1 inG, and let v be an eccentric node of u. Then e(v) ≥ t. For a central node

w, let P be a v−w geodesic. Sine e(w) = e1, d(v, w) ≤ e1. Since the eccentricities

of adjacent nodes can differ by at most one, and e(w) = e1 < t ≤ e(v), some

node x on P has eccentricity t. Since d(u, v) = t > e! ≥ d(x, v), node x must be

distinct from u. Thus there are at least two nodes with eccentricity t.

Lemma 5.4. For all positive integers r and d satisfying r ≤ d ≤ 2r − 2, there

exist graphs with radius r and diameter d. The minimum order of such a graph

is r+ d. There are exactly 〈(d− r)/2〉+1 non isomorphci graphs of order r+ d,

radius r and diameter d. Each graph consists of a path u0, u2, ..., ud and a path

us, v1, v2, ..., vr−1, vs+r with only the nodes us and us+r in common.

Definition 5.5. An eccentric sequence is minimal if it has no proper eccentric

subsequences with the same number of distinct eccentricities.

Theorem 5.6. A sequence S of positive integers is eccentric if and only if some

subsequence T of S is eccentric.

5.3 DISTANCE SEQUENCES

The distance degree sequence consists of a collection of sequences. For a node

v in a connected graph G, let di(v) be the number of nodes at distance i from v.

The distance degree sequence of node v is
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dds(v) = (d0(v), d1(v), d2(v), ..., de(v)(v))

Note the following:

1. d0(v) = 1∀v; d1(v) = degv.

2. The length of sequence dds(v) is one more than the eccentricity of v.

3.
∑

di(v) = p.

The distance degree sequence dds(G) of a graph G consists of the degree sequence

arranged in an numerical order. If a particular dds appears k times, we list it once

with k as an exponent to indicate the multiplicity. For example in the following

figure, dds(t) = (1, 2, 1, 1), dds(w) = (1, 3, 1) and dds(G) = (1, 1, 2, 1; (1, 2, 1, 1); (1, 3, 1)3)

b

b

b b

b

t

u

w

v

x

A graph to illustrate degree sequence

The distance degree regular(DDR) graphs is the graphs in which all nodes

have same distance dgree sequence.Thus DDR graph has the property that

dds(G) = ((dds(v))p), where v is any node in G. A DDR graph G is necessarily

regular since d1(v) = d1(w) for any two nodes v and w in G. However, the

converse is not true.

A connected graph G is distance degree injective (DDI) if the distance degree

sequences of its nodes are all distinct. As opposed to DDR graphs, these graphs
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are completely assymmetric. Indeed, all DDi graphs have identity automorphism

group. There are DDR graphs of ever order and every diamter because of the

Kn and Cn.

Theorem 5.7. Every regular graph containing a cutnode is not DDR.

Proof : Let G be a connected regular graph with a cutnode v, and let G1 and

G2 be components of G− v. Suppose that an eccentric node of v in G lies in G2,

and let x be a neighbour of v which lies in G1. Then the eccentricity of x within

G is greater than the eccentricity of v in G. Thus dds(x) 6= dds(v).

b b b b b b

b b

b b

b b

bbbb

b b

b b

A pair of graphs with the same status sequence

Theorem 5.8. If G is non trivial graph for which both G and Ḡ are DDI, then

both G and Ḡ have diameter 3.

Proof : The only graphs with diameter 1 are the complete graphs and for p > 1,

they are DDR but not DDI. Next, suppose that G is a graph with diameter 2.

Then the distance degree sequence of any nodes of G have the same degree. Thus

no DDI graph has diameter 2. Finally if d(G) > 3, then d(Ḡ)leq2. Thus aDDI

72



graph cannot have diameter greater than three if its complement is also a DDI

graph.

Definition 5.9. The status sequence ss(G) of a connected graph G is the list

of its status values arranged in non decreasing order. The following graph has

status sequence (53, 7, 8).

b b

b

b b

G 5

7

5

5
8

A graph to illustrate the status sequence

The relationship between status sequence and median problems is analogous

to the relationship between eccentric sequences and center problems. There are

several properties which distinguish status sequences from eccentric sequences.

1. The status values need not be consecutive integers.

2. There need not be two nodes having maximum status.

3. ss(G) is derivable from dds(G); For the sequence dds(v) = (d0(v), d1(v), ..., de(v)(v)),

we have

s(v) =
e(v)
∑

i=1

i− di(v)

It is easy to see that their distance degree sequences are different because their

diameters differ as do their degree sequences. Obviously, all statuses of nodes in
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Kp are equal, as are those in Cp. Thus these graphs are self-median so are al DDR

graphs. In searching for self-median graphs, one usually finds that the graph is

regular. Self-median graphs are also called status sequence regular graphs. The

other extreme from self-median graphs, we may consider graphs G for which all

of the terms of ss(G) are distinct. We call these graphs as status injective SI.

5.4 THE DISTANCE DISTRIBUTION

Let D1 be the number of pair of nodes at distance i from one another in the

connected graph G with diameter d. Then the distance distribution of G is the

sequence

dd(G) = (D1, D2, ..., Dd)

Obviously, dd(G) is obtained at once from dds(G) as 2Di =
∑

di(v) with the

sum taken over all nodes v of G. Also, note that D1 = q, the number of edges

in G.

Although dd(G) can be derived from dds(G), it still contains a wealth of information

and deserves a separate treatment. In fact, in certain problems,dds(G) contains

too much information and is cumbersome to work with whereas dd(G) is ideal

for the problem. However, remembering that dd(G) can be derived from dds(G)

is useful.

Theorem 5.10. If G is a connected graph on p nodes, then D1 +D2 ≥ 2p− 3.
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Theorem 5.11. When G is a tree, D2 is given by the degree sequence

(D2=
p∑

i=1

degvi

2

)

Proof : Let N(v) be the set of neighbours of v. Each pair of nodes in N(v) are

joined by a unique path, which necessarily passes through v. The term
(

degvi
2

)

counts the number of pair of nodes that are at distance two, via v1 from each

other. by summing over all vi, the result follows.

For a connected graph G, let sk(G) be the kth partial sum of dd(G) that is,

sk(G) =
k
∑

i=1

Di

Theorem 5.12. Let T be any tree on p nodes. Then sk(T ) ≥ sk(Pp), and the

equality holds for all k iff T = Pp

Proof : The result is clear for small p by induction process. Assume it is true

for all t < p and let T be any tree on p nodes. Let d(G) = d and e(v) = d,

that is,v is the end node of a diametral path in T . By the inductive hypothesis,

sk(T − v) ≥ sk(Pp−1)∀k. By attaching extra node to an end node of Pp−1 by

exactly 1. By reattaching v to T − v, we increase each Di of T − v by atleast 1.

By Dd we have accumulated an increase of p − 1, since each node of T can be

reached from v by a path of length d or less. Thus, sk(T ) ≥ sk(Pp) for each k.
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If T 6= Pp then d(Pp) = p− 1 and d(T ) < p− 1. Therefore,

sp−2(T ) = sp−1(T ) = sp−1(Pp) > sp−2(Pp)

Hence the equality holds for all k if and only if T = Pp

Definition 5.13. If a graph has a path of length k, then it has a path of each

smaller length. This may lead one to feel that dd(G) must be a non increasing

sequence. Not only is this not in case, but dd(G) must be non increasing sequence.

Not only is this not the case, but dd(G) need not evn be unimodal. A sequence

Si is unimodal if there is some k for which Si ≤ Si+1 for i < k and Sj ≥ Sj+1

for j ≥ k.

A distance distribution is uniform if Di = Dj∀i and j. Thus, if G has diameter

d and dd(G) is uniform, then
(

Di=p
2/d

)

.

Theorem 5.14. 1. If
(

p
2

)

is even, there exist at least two uniform distance

distributions for p.

2. if
(

p
2

)

is divisible by 3, there are at least two graphs of order p with uniform

distance distributions, except for p = 3 and 6.

3. If p = 12k + 2 and
(

p
2

)

is the product of two primes, then Kn is the unique

graph of order p with a uniform distance distribution.

Definition 5.15. The mean distance µD(G) of a connected graph G is the

average of the distances between pairs of nodes in G. Of copurse, µD(G) can

be calculated from dd(G):
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(µD(G)=
d∑

i=1

iDi/p

2

)

Since the mean distance and the radius are both measures the central tendency

of a graph. For such graphs we obatin rather a nioe raltionship between r and Di

from dd(G). We know that,

(

d∑

i=1

Di=p

2

)

Knowing this and setting µD(G) = r(G), we obatin our result.

Theorem 5.16. If r(G) = d(G) ≥ 2, then µD(G) 6= r(G).

Theorem 5.17. If d(G) = 3, then µD(G) = r(G) if and only if r(G) = 2 and

D1(G) = D3(G).

Proof : If d = 3, then r = 2 or 3. Suppose that µd(G) = r(G). Thus by the

above theorem, r must be 2. Substituting in relation between r and Di we get,
(

D2+2D3=p
2

)

. But
(

D1+D2+D3=p
2

)

. Thus D1 = D3

If r(G) = 2 and D1 = D3, then,
(

µD(G)=(D1+D2+D3)/p
2

)

= (2D1 + 2D2 + 2D3)/(D1 +D2 +D3) = 2 = r(G)

Corollary 5.18. The only tree T of diameter 3 with µD(T ) = r(T ) is the tree

having degree sequence (4,3,1,1,1,1,1).
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Definition 5.19. A caterpillar is a tree T having a diametral path incident with

every edge of T . A tree which we call the double starred path Pa,b,c is the graph

formed from Pa by attaching b pendant edges at one end and c pendant edges at

the other. By joining various pairs of end nodes in such graphs, we were able to

show that there are graphs for every diamter d 6= 2 for which µD(G) = r(G).

The edge density ρ(G) of (p, q)-graph G is
(

q/p
2

)

. For each rational number t > 1

there are infinitely many graphs G with µD(G) = t.

Three nodes of a graph are said to be collinear if they can be labelled u, v, w so that

d(u, v) + d(v, w) = d(u, w)

The collinearity ratio cr(G) of a graph G is the proportion of collinear triples of

nodes in G. Thus

cr(G) = number of collinear triples
p3

We define an equilateral triangle in a graph G as a set {vi, vj, vk} of three nodes

such that all three distances dij, dik, djk are finite and equal. They characterised

the connected graphs having no equilateral triangles. We note that inserting

additional edges into a a graph may increase, decrease nor not affect the value

of cr(G).

A connected graph G is geodetic if any twonodes u, v are joined by precisely one

path of length d(u, v).
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Theorem 5.20. For any connected graph G on p ≥ 3 nodes, we have

cr(G) ≥ 3(µD(G)− 1)/(p− 2)

Theorem 5.21. If G is geodetic, then

µD(G) =
(p+ 1)

3
−

r(G)

p2

5.5 PATH SEQUENCES

Chronologically, this was the second graphical sequence to be studied. Let

li be the number of apirs of nodes joined by a path of length i. Capobinaco

defined the path length distribution(pld) of a connected graph G as the sequence

(l1, l2, ..., lp−1).

b b

b

b b

b

b

(9,13,15,15,15,3)
A graph and its path length distribution

Theorem 5.22. For every p ≥ 9 there are pairs of trees on p nodes with the

same pld. Moreover, for any integer n, one can contruct n trees having the same

pld.

For any trees T , the sequence pld(T ) will end with a string of zeros beyond ld.

There is a unique path between any pair of nodes in a tree. Thus for any tree T
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the first d terms of pld(T ) corresponds precisely to dd(T ).

Corollary 5.23. The distance distribution distinguishes non isomorphic trees

only for p ≤ 8.

Definition 5.24. For each node v in a connected graph G, let pi(v) be the number

of paths of length i beginning at v. Then define the path degree sequence of v as

pds(v) = (p0(v), p1(v), p2(v), ..., pp−1(v))

b

b

b

b b

u(1,3,5,3,1)

x(1,1,2,4,4)
W(1,3,4,4)

v(1,3,5,3,1)

t
(1,2,4,6)

The path degree sequence of the nodes of a graph

The sequences pds(v) generally end with a string of zeros, so we terminate the

sequence at the last nonzero term.

1. p0(v) = 1∀v

2. p1(v) = degv

3. if G is a tree, then pds(v) = dds(v).
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The path degree sequence pds(G) of a graph G consists of the collection of

sequences pds(v) of its nodes, listed in numerical order. If a particular pds

appears k times, we list it once with k as an exponent to indicate the multiplicity.

For example in the above figure, pds(t) = {1, 2, 4, 6}, pds(w) = {1, 3, 4, 4} and

pds(G) = ((1, 1, 2, 4, 4, ), (1, 2, 4, 6); (1, 3, 4, 4); (1, 3, 5, 3, 1)2)

Since a tree T has a unique path joining each pair of nodes, clearly pds(T ) =

dds(T ). In general, pds(G) distinguishes between non isomorphic graphs far

more frequently than dds(G) does.

b

b

b

b b

u(1,3,5,3,1)

x(1,1,2,4,4)
W(1,3,4,4)

v(1,3,5,3,1)

t
(1,2,4,6)

The path degree sequence of the nodes of a graph

Definition 5.25. Let gi denotes the number of pairs of nodes joined by i geodesics

in graph G. Capobianco defined the geodesic distribution gd(G) of G as (g1, g2, g3, ...).We

know that geodetic graph has a unique geodesic joining each pair of nodes. Thus,

G is geodestic if and only if gd(G) has a single term.

The first difference we note between gd(G) and other sequences is that the length

of the sequence gd(G) is not specified. This length varies with G and can be quite

long. Let m(p) denote the maximum length of gd(G) for a graph G on p nodes.
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A graph with geodesic distribution
(22,5,1)

Theorem 5.26. Let T = {〈ti〉} be the set of all partitions of the integer p− 2.

The value m(p) is achieved by maximising
∏

ti over T .

Lemma 5.27. In m(p) =
∏

ti, each factor ti is at most 4.

Lemma 5.28. For m(p) =
∏

2b3c, where 2b+ 3c = p− 2 we have b ≤ 2.

5.6 OTHER SEQUENCES

Definition 5.29. Let ni denote the number of pairs of nodes with i common

neighbours in a graph G. The common neighbour distribution nd(G) of a graph on

p nodes as (n0, n1, n2, ..., np−2). This sequence was introduced to aid n distinguishing

non isomorphic graphs. For trees T , nd(T) is derivable from dd(t).

Theorem 5.30. For a tree T ,
(

nd(T )=((p
2)−D2,D2)

)

.

Corollary 5.31. Let degvi denote the degree of node vi in a tree T . Then,

( nd(T )=((p

2)−
p∑

i=1

(degvi2),(degvi2))

)

.
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Theorem 5.32. In any graph G,

(µN (G)=
p−2∑

i=0

(degvi

2)/(p2)

)

.

It was found that when the common neighbour distribution of a graph equals

that of its complement, there is a direct relation to dominating sets. Set X ⊂

V (G) dominates set Y ⊂ V (G) if every node in Y −X is adjacent to a node in X .
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(1,3,1)
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(1,2,2)
(1,3,1)
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(1,4)

(1,1,3) (1,1,3)

(1,1,3)(1,1,3)
(1,2,2)

(1,3,1) (1,3,1)

(1,2,2) (1,2,2)

(1,2,1,1)

(1,2,1,1)
(1,3,1)

(1,1,1,2) (1,2,2)

G1

G2 H2

H1

Pairs of graph for whih exactly
one of dd(G) and nd(G) agree

Theorem 5.33. If nd(G) = nd(Ḡ), then n0 equals the number of dominating

sets of order 2 in G.

Proof : Let nd(G) = nd(Ḡ). Then for two distinct nodes u, v having no common

neighbour, there exists a pair of nodes u′, v′ with no common neighbours in Ḡ.

Hence {u′, v′} is a dominating set for G.
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Corollary 5.34. If G is a connected graph with nd(G) = nd(Ḡ) and n0 > 0,

then d(G) ≤ 5.

G

eds(G) = (2, 3, 3, 4, 4, 4)
ends(G) = (2, 2, 2, 2, 3, 3)

A graph G with sequences eds(G), ends(G)

b

b b

b

b

Theorem 5.35. For a graph G, nd(G) = nd(Ḡ) if and only if Ni equals the

number of apairs of nodes which dominate n− i nodes of G.

Definition 5.36. Let ed(x) be the number of edges incident with edge x. Then

the edge degree sequence eds(G) of graph G is the sequence ed1, ed2, ..., edq of

values ed(x) arranged in non decreasing order. Note that if x = uv, then

ed(x) = degu + degv − 2. Clearly, eds(G) is precisely the degree sequence of

L(G), the line graph of G..

For each edge x = uv, let the edge-to-node degree end(x) of x be the number of

distinct nodes in G− x adjacent to either u or v. Then the edge-to-node degree

end(G) of G is the sequence of values end(x) listed in non decreasing order.

For each edge x = uv, let the edge-to-node degree end(x) of x be the number

of distinct nodes in G−x adjacent to either u or v. Then the edge-to-node degree

sequence ends(G) of G is the sequence of values end(x) listed in non decreasing

order . A graph G along with eds(G) and ends(G) are displayed above.
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5.6.1 FURTHER RESULTS

1. The mean distance of Ka,b is

µD(Ka,b) =
2(a2 − a+ b2 − b+ ab)

(a2 − a+ b2 − b+ 2ab)

2. For nontrivial paths and for cycles, we have

µD(Pp) = r(Pp) if and only if p = 2 or 5(p ≥ 2).

µD(Cp) = r(Cp) if and only if p = 3.

3. For complete bipartite graphs and wheels, we have

µD(Ka,b) = r(Ka,b) if and only if a = b = 1.

µD(W1,n) = r(W1,n) if and only if n = 4.

Definition 5.37. The independence number of a graph G is the maximum number

of nodes in G, no two of which are adjacent. The mean distance of a connected

graph is less than or equal to the independence number of G.

A graph G is bigcodetic if each pair of nodes are joined by at most two geodesics.
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Chapter 6

DIGRAPHS

6.1 DIGRAPHS AND CONNECTEDNESS

Definition 6.1. A digraph D consists of a finite set V of nodes and a collection

of ordered pairs of distinct nodes from V . Any such pair (u, v) is called an arc

or directed edge and will be denoted by uv. The arc uv goes from u to v and is

incident with u and v. We also say that u is adjacent to u and v is adjacent from

u. The indegree id(v) of a node v is the number of nodes adjacent to v, and to

the outdegree od(v) is the number adjacent from v.

A directed walk in a digraph D is an alternating sequence of nodes and arcs

v0, x1, x2, ..., xn, vn in which each arc is vi−1vi. The length of such a walk is n,

the number of arcs in it. A closed walk has the same first and last nodes, and a

spanning walk contains all the nodes of D. A path is a walk in which all nodes

are distinct, a cycle is a non-trivial closed walk with all nodes distinct(except first

and last). An acyclic digraph contains no directed cycles. If there is a path from

u to v, then v is said to be reachable from u, and the distance d(u, v) from u to
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v is the length of any shortest such path.

Definition 6.2. Each walk is directed from the first node vo to the last vn.

We also need a concept which does not have this property of direction and is

analogous to a walk in a graph. A semiwalk is again an alternating sequence

v0, x1, v1, ..., xn, vn of nodes and arcs, but each arc xi may be either vi−1vi or

vivi−1. A semipath, semicycle and so forth, are defined as expected.

Whereas a graph is either connected or is not, there are three different ways in

which a digraph may be connected. A digraph is strongly connected or strong, if

every two nodes are mutually reachable. it is unilaterally connected or unilateral,

if for any two nodes at least one is reachable from the other, and it is weakly

connected or weak, if every two nodes are joined by a semipath.Clearly, every

strong path is unilateral and every unilateral digraph is weak, but the converse

statements are not true. A digraph is disconnected if it is not even weak.

Theorem 6.3. A digraph is strong if and only if it has a closed spanning walk,

it is unilateral if and only if it has a spanning walk, and it is weak if and only if

it has a spanning semiwalk.

Corresponding to connected components of a graph, there are three different

kinda of components of a digraph D. A strong component of D is a maximal

strong of a subgraph; a unilateral component and a weak component are defined

similarly. It is very easy to verify that every node of a digraph D is in just one

weak component and in at least one unilateral component and this is also holds

for each arc. Furthermore, each node is in exactly one strong component, and
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an arc lies in one strong component or none, depending on whether or not it is

in some cycle.

The strong components of a digraph are the most important among these. One

reason is the way in which they yield a new digraph which although simpler,

retains some of the structural properties of the original. Let S1, S2, ..., Sn be the

strong components of D. The condensation D∗ of D has the strong components

of D as its nodes with an arc from Si to Sj whenever there is at least one arc in

D from a node of Si to a node of Sj.

Definition 6.4. A digraph D is symmetric if whenever uv is an arc, then so

is vu. On the other hand, D is asymmetric if the presenc of uv is obviates

that of vu. When both uv and vu are in D, they form a symmetric pair. This

D is symmetric if and only if it has no symmetric pairs. The following figure

illustrates digraphs with these properties. The digraph of a graph G = (V,E),

written D(G), also has V as its set of node set, and each edge e of G is replaced

by the symmetric pair of arcs joining the two endnodes of e. The graph of digraph

D, written G(D), also has the same node set as D, but two nodes u and v are

now adjacent if they are joined in D it is the symmetric closure of D.

An orientation of a graph G is any digraph that results from an assignment of

directions to the edges of G. If G has at least one edge, any orientation of G is

asymmetric and is called oriented graph.

Theorem 6.5. A graph G has a orientation that is strong if and only if G is

connected and has no bridges.
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Since every non-trivial graph G has at least two nodes that are not cutnodes,

it follows that every non-trivial digraph does as well. This means that if D is

strong, unilateral, or weak then there are two nodes u and V such that both

D − u and D − v are weak.

b

b

b

b

A strong graph with no spanning cycle

It should be stressed that a strong digraph need not have a spanning cycle.

For example, the digraph on 4 nodes in the above figure is strong yet has no

spanning cycle. However, there is a strong relationship between cycles and strong

digraphs as illustrated following

Theorem 6.6. A weak digraph D is strong if and only if every arc of D is

contained in a cycle.

Proof : IfD is strong then for every arc uv there must be a path v, e0, v1, e1, ..., en, u

from v to u. Then v, e0, v1, e1, ..., en.u, uv, v is a cycle containing arc uv.

Conversely, it is given that every arc of the weak digraph D is contained in a

cycle. Since D is weak, there is a semiwalk u, e1, v1, e2, ..., en, v joining any two
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nodes u and v. arc e1(which should be either uv1 or v1u) is contained in a cycle,

so u and v1 are in the same strong component of D. Similarly each vi and vi+1

are in the same strong component as are vn and v. Thus all the nodes of the

semiwalk joining u and V are in the same strong component of D. As u and v

are any two nodes, it follows that D is strong.

6.2 ACYCLIC DIGRAPHS

The converse digraph D′ of D has the same set of nodes as D and the arc

uv is in D′ if and only if arc uv is in D. Thus the converse of D is obtained

by reversing the direction of every arc of D. We have already encountered some

converse concepts, such as indegree and outdegree and these concepts concerned

with direction are related by a rather powerful principle. This is a classical result

in the theory of binary relations.

Principle of Directional Duality: For each theorem about digraphs, there

is a corresponding theorem obtained by replacing every concept by its converse.

Theorem 6.7. An acyclic digraph has at least one node of outdegree zero.

Proof : Consider the last node of any longest path in the digraph. This node

can have no nodes adjacent from it since otherwise there would be a cycle.

The dual theorem follows immediately by applying the principle of Directional
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Duality. In keeping with the use of D′ to denote the converse of digraph D, we

shall use primes to denote dual results.

Theorem 6.8. An acyclic digraph D has at least one node of indegree zero.

It was noted that the condensation of any digraph is acyclic. The adjacency

matrix A(D) of a digraph D is a (0, 1)-matrix with aij = 1 if there is an arc from

vi to vj .

Theorem 6.9. The following properties of a digraph D are equivalent.

1. D is acyclic.

2. d∗ is isomorphic to D.

3. Every directed walk of D is a directed path.

4. It is possible to label the nodes of D so that the adjacency matrix A(D) is

upper triangular.

Definition 6.10. Two dual types of acyclic digraphs are of particular interest.

A source in D is a node which can reach all others, a sink is the dual concept.

An out tree is a digraph with a source but having no semicycles; an in-tree is its

dual. The source of an out-tree is its root as is the sink of an in-tree. An out-tree

has also been called an arborescence. These concepts have been widely used in

computer science in searching and sorting algorithms.
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An out tree and its converse

Theorem 6.11. A weak digraph is an out-tree if and only if it has exactly one

root and all other nodes have indegree one.

Proof : Suppose that D is a weak digraph. If D is an out-tree, it has exactly

one root and no semicycles. Hence, each node is reachable from the root in only

one way, so each nonroot has indegree one. On the other hand, if D has exactly

one root r and all other nodes have indegree one, then there is a unique directed

path from r to each other node, and D has no semicycles. Thus D is an out-tree.

Theorem 6.12. A weak digraph is an in-tree if and only if it has exactly one

root and all other nodes have out-degree 1.
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6.3 LONG PATHS IN DIGRAPHS

The values of certain invariants might guarantee the existence of a path of a

given length in a graph. A simpler statement is true for digraphs. For example,

every orientation of an n chromatic graph contains a directed path of length

n − 1. We saw that many of the sufficient conditions for hamiltonicity have

counterparts when considering generalisations of hamiltonian graphs. We shall

now examine these concepts in the concepts of digraphs.

Definition 6.13. For digraphs, distance concepts are defined analogous to those

for graphs except that we must heed the directions on the arcs. Thus, the distance

from u to v is the length of a shortest u − v path. The eccentricity of a node v

in a digraph D is its distance to afarthest node in D. For a strong digraph

the eccentricities are all finite. The radius is the minimum eccentricity and

the diameter is the maximum. It is easy to read off the eccentricity of node

vi ∈ D from the distance matrix ∂(D). The diameter and radius can be obtained

similarly.

b

b

b b

b b

5

3
4

23

4

A digraph and its eccentricities
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Definition 6.14. A circulant is a graph determined by its order p and a subset

S = {a, b, c, ...} of {1, 2, 3, ..., 〈p/2〉} as follows. The circulant graph C(p :

S) = C(p : a, b, c, ...) has node set Zp = {0, 1, ..., p − 1} and each node u is

adjacent with the nodes u+ a, u+ b, u+ c, ..., all sums taken modulo p. Now the

corresponding directed circulant is defined similarly, except that adjacent with is

replaced by adjacent to. Certain directed circulants have also been called double

loop computer networks namely, those of form C(p; 1, h) which is denoted more

briefly by D(p, h). The exact value of the diameter of the directed circulant

D(p, h). One wants to minimise the diameter as it varies directly with the

transmission time when the nodes are microprocessors and the arcs are communication

channels. The choice of jump size h is crucial in such problems.

Definition 6.15. A digraph is hamiltonian if it has a closed spanning path. The

sufficient conditions for a digraph to be hamiltonian are similar in flavour to those

for graphs. Of course, every hamiltonian digraph is strong, but the converse is

not true. For example, a strong digraph is strong but the converse is not true.

Thus, most results on hamiltonian digraphs begin with the assumption that D is

strong. For a node v in a digraph D, let degv = id(v) + od(v).

Theorem 6.16. If D is non-trivial strong digraph of order p such that for every

pair of distinct nonadjacent nodes u and v

degu+ degv ≥ 2p− 1
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then D is hamiltonian.

Outline of proof Since D is strong it has cycles. Let C be a longest cycle in D

and suppose that C does not span. Then for a node v not on C there are paths

from C to v and back to C either rejoining C at the same node of departure (a)

or a different node (b). If all such paths are restricted to type (a), one gets a

contradiction. Thus there is a path of type (b). If the path of type (b) is too

long one would get a cycle longer that C, a contradiction. Thus the length of the

path must be restricted. but the restriction on this length also conflicts. Thus

C must in fact span D, hence D is hamiltonian.

Corollary 6.17. If D is a strong digraph of order p such that degv ≥ p for all

nodes v in D, then D is hamiltonian.

Corollary 6.18. Let D is a nontrivial graph of order p. If every pair of distinct

nodes u and v with u not adjacent to v satisfies

id(v) + od(v) ≥ p

then D is hamiltonian.

Proof : In order to apply Meyniel theorem, we first show that D is strong. For

arbitrary nodes u and v, we must show that v is reachable from U . If u is adjacent

to v, we are done, so assume the contrary. Then there is anode w adjacent from
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u and adjacent to v. Hence v is reachable from u and D is strong.

Now for any two distinct nonadjacent nodes u and v of D, we have

degu+ degv = id(u) + od(u) + id(v) + od(v)

=id(u)+od(v)+id(u)+od(v) ≥ p+ p ≥ 2p− 1

Hence D is hamiltonian.

Corollary 6.19. IfD is a digraph of order p such that for all pairs of nonadjacent

nodes u and v

degu+ degv ≥ 2p− 3

then D has a spanning path.

Proof : The very first theorem guarantees that D is at least weak. We can form

a strong digraph D1 as the symmetric join D +K1 of a new node w to D, that

is, add w and a symmetric pair of arcs between w and each node of D. For every

pair of nodes u1 and v1 in D1 we have

degu1 + degv1 ≥ 2p− 3 + 4 = 2p− 1 = 2(p+ 1)− 1

As D1 has order p + 1, the above theorem implies that D1 has a hamiltonian

cycle C. By deleting node w and its incident arcs in C, we obtain a spanning

path of D.
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Definition 6.20. The first generalisation of hamiltonian digraphs we consider

are digraphs for which there is a spanning path from each node to each other

node. A digraph D is hamiltonian-connected if there is a spanning u − v path

for all pairs of distinct nodes u and v in D. A hamiltonian-connected digraph is

always hamiltonian, but the converse is not true as a directed cycle of order at

least 4 shows.

Theorem 6.21. Let D be a nontrivial digraph of order p. If every pair of distinct

nodes u and v with u not adjacent to v satisfies

od(u) + id(v) ≥ p+ 1

then D is hamiltonian-connected.

Definition 6.22. There is a natural analogy to the concept of a pancyclic graph.

A digraph D of order p is pancyclic if D contains a directed cycle of each length

k, 3 ≤ k ≤ p. Thus, these digraphs are a special class of hamiltonian digraphs.

Theorem 6.23. Let D be a strong digraph of order p ≥ 3 such that degu+degv ≥

2p for all pairs u and v of nonadjacent nodes. then D is either pancyclic or p is

even and D is the digraph of Kp/2,p/2.

There are also results for strong digraphs which guarantee the existence of a

path of a given length when the digraph might not have a spanning path. For
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example, a strong digraph of order p with id(v) ≥ k and od(v) ≥ h for all v

contains a path of length at least min{h + k, p− 1}.

6.4 MATRICES AND EULERIAN DIGRAPHS

There are several matrices associated with a digraph, and each one provides

certain information about the digraph. For example the row sums of the adjacency

matrix A(D) of the digraph gives the outdegree of the nodes of D, while the

column sums give the indegrees.

As in the case of graphs, the powers of the adjacency matrix A of a digraph give

information about the number of walks from one node to another.

Theorem 6.24. The i, j entry a
(
ijn) of An is the number of walks of length n

from vi to vj.

Three other matrices are associated with D are the reachability matrix, the

distance matrix, and the detour matrix. In the reachability matrix R(D), rij = 1

if vj is reachable from vi and 0 otherwise. The i, j entry of the distance matrix

∂(D) gives the distance from node vi to node vj, and is ∞ if there is no path

from vi to vj. In the detour matrix T (D), the i, j entry is the length of any

longest path from vi to vj and again is ∞ if there is no such path.
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A graph to illustrate three
associated matrices

Corollary 6.25. The entries of the reachability and distance matrices can be

obtained from the powers of A as follows.

1. For all i, rii = 1 and dii = 0.

2. rij = 1 if and only if for some n, a
(
ijn) > 0.

3. d(vi, vj) is the least n such that a
(
ijn) > 0, and 0 otherwise.

Definition 6.26. The element wise product sometimes called the Hardamard

product B × C of two matrices B = [bij ] and C = [cij ] has bijcij as its i, j

entry. The reachability matrix can be used with elementwise products to find

strong components.

Corollary 6.27. Let vi be a node of a digraph D. The strong componenet of D

containing vi is determined by the unit entries in the ith row of the symmetric

matrix R×RT .

As in case of graphs, weights are placed on the arcs corresponding to a

directed distance from one node to the another. If for some pair of nods vi
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and vj there is no intermediate node vk such that dij = dik+dkj then dij is called

a basic distance. Thus each basic distance dij is determined by the weight on

the single arc vivj . In the following figure , d13 = 4 and is basic, but d24 is not

because d24 = d23 + d34.

A weighted graph W is a realisation of matrix M of order n if there is a subset

V = {v1, v2, ..., vn} of the nodes of W having order n such that d(vi, vj) =

mij∀i, j, 1 ≤ i, j ≤ n. A realisation is optimal if the total weights used on its

arcs is a minimum. Optimal realisations of directed distance matrices of order n

were characterised.

b b

bb

v1 v2

v3v4

2

3

2

1

A weighted digraph

Theorem 6.28. A directed distance matrix M of order n has an optimal realisation

if and only if M can be realised by a simple directed cycle, or equivalently, M

has n basic entries.

Definition 6.29. The number of spanning in-trees to a given node ina digraph

was found. To give this result, called the matrix tree theorem for digraphs, we

need some other matrices related to D. Let Mod denote the matrix obtained from

−A by replacing with the ith diagonal entry by od(vi). The matrix Mid is defined
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dually.

Theorem 6.30. For any labelled digraph D , the value of the cofactor of each

entry in the ith orw of Mod is the number of spanning in-trees with vi, as sink.

Theorem 6.31. The value of the cofactor of any entry in the jth column of Mid

is the number of spanning out trees with root vi.

Definition 6.32. An eulerian trail in a digraph D is a closed spanning walk in

which each arc of D occurs exactly only once. A digraph is eulerian if it has such

a walk.

Theorem 6.33. For any weak digraphD, the following statements are equivalent.

1. D is eulerian.

2. For each node u, od(u) = id(u).

3. There exists a partition of the arc set of D into directed cycles.

Corollary 6.34. In an eulerian graph D, let di = id(vi) and c be the common

value of all the cofactors of Mod. Then the number of eulerian trails is

c.
p
∏

i=1

(di − 1)!
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6.5 TOURNAMENTS

Perhaps the most studied digraphs are the tournaments. A tournaments is a

non-trivial oriented complete graph. All tournaments with two, three and four

nodes are shown in the following figure. The first with three nodes is called

transitive triple, the second a cyclic triple.

In a round-robin tournament, a given collection of players or teams play a game

in which the rules of the game do not allow for a draw. Every pair of players

encounter each other and exactly one from each pair emerges victorious. The

players represented by nodes and for each pair of nodes an arc its drawn from

the winner to loser, resulting in a tournament.
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The seven smallest tournaments

Theorem 6.35. Every tournament has a spanning path.
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Proof : The proof is by induction on the number of nodes. Every tournament

with 2,3 or 4 nodes has a spanning path, by inspection. Assume the result is

true for all tournaments with n nodes and consider a tournament T with n + 1

nodes. Let v0 be any node of T . Then T − v0 is a tournament with n nodes, so

it is a spanning path P , say v1v2...vn. Either arc v1v0 or v1v0 ∈ T . If v0v1 ∈ T ,

then v0v1...vn is a spanning path of T . If v1v0 ∈ T , then let vk be the first node

of P for which the arc v0vk is in T . If no such node vk exists, then v1v2...vnv0 is a

spanning path. In any case, we have shown that T has spanning path completing

the proof.

Definition 6.36. Using the terminology from robin-robin tournaments, we say

that the score of a node in a tournament is its outdegree ans a node is said to

dominate each node to which it is adjacent.

Theorem 6.37. In any tournament the distance from a node with maximum

score to any other node is 1 or 2.

Proof : Let v be a node with maximum score k in a tournament T . Suppose u

is a node at distance at least 3 from v. Then uv ∈ T and u must dominate each

of the k nodes that v dominates. Hence od(u) ≥ k + 1 > od(v), a contradiction.

Theorem 6.38. A non decreasing sequence of non-negative integers s1, s2, ..., sp

is the score sequence of a tournament T if and only if for each k, 1 ≤ k ≤ p, we
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have

(

k∑

i=1

si≥k

2

)

with equality holding for k = p.
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